The enhancement to the back-propagation algorithm presented in this paper has resulted from the need to extract sparsely connected networks from networks employing product terms. The enhancement works in conjunction with the back-propagation weight update process, so that the actions of weight zeroing and weight stimulation enhance each other. It is shown that the error measure, can also be interpreted as rate of weight change (as opposed to ${\Delta}W_{ij}$), and consequently used to determine when weights have reached a stable state. Weights judged to be stable are then compared to a zero weight threshold. Should they fall below this threshold, then the weight in question is zeroed. Simulation of such a system is shown to return improved learning rates and reduce network connection requirements, with respect to the optimal network solution, trained using the normal back-propagation algorithm for Multi-Layer Perceptron (MLP), Higher Order Neural Network (HONN) and Sigma-Pi networks.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.8
no.2
/
pp.116-120
/
2008
Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.49
no.3
/
pp.157-163
/
2000
In this paper, an Evolving Neural Network Controller(ENNC) which its structure and its connection weights are optimized simultaneously by Real Variable Elitist Genetic Algoithm(RVEGA) was presented for stabilization of an Inverter Pendulum(IP) system with nonlinearity. This proposed ENNC was described by a simple genetic chromosome. And the deletion of neuron, the determinations of input or output neuron, the deleted neuron and the activation functions types are given according to the various flag types. Therefore, the connection weights, its structure and the neuron types in the given ENNC can be optimized by the proposed evolution strategy. Through the simulations, we showed that the finally acquired optimal ENNC was successfully applied to the stabilization control of an IP system.
Proceedings of the Korean Society of Marine Engineers Conference
/
2001.05a
/
pp.243-248
/
2001
The stabilization control of Inverted Pendulum(IP) system is difficult because of its nonlinearity and structural unstability. Thus, in this paper, an Evolving Neural Network Controller(ENNC) without Error Back Propagation(EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC) are compared with the ones of conventional optimal controller and the conventional evolving neural network controller(CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.
Journal of the Korean Society for Precision Engineering
/
v.10
no.4
/
pp.170-179
/
1993
In this study, self-organized neural network is used to solve the vorrespondence problem of the axial stereo image. Edge points are extracted from a pair of stereo images and then the edge points of rear image are assined to the output nodes of neural network. In the matching process, the two input nodes of neural networks are supplied with the coordi- nates of the edge point selected randomly from the front image. This input data activate optimal output node and its neighbor nodes whose coordinates are thought to be correspondence point for the present input data, and then their weights are allowed to updated. After several iterations of updating, the weights whose coordinates represent rear edge point are converged to the coordinates of the correspondence points in the front image. Because of the feature map properties of self-organized neural network, noise-free and smoothed depth data can be achieved.
For developing the location based service which is individualized and specialized according to the characteristic of the users, the spatio-temporal pattern mining for extracting the meaningful and useful patterns among the various patterns of the mobile object on the spatio-temporal area is needed. Thus, in this paper, as the practical application toward the development of the location based service in which it is able to apply to the real life through the pattern mining from the huge historical data of mobile object, we are proposed STOMP(using Frequency of sequence and Weight) that is the new mining method for extracting the patterns with spatial and temporal constraint based on the problems of mining the optimal moving pattern which are defined in STOMP(F)[25]. Proposed method is the pattern mining method compositively using weighted value(weights) (a distance, the time, a cost, and etc) for our previous research(STOMP(F)[25]) that it uses only the pattern frequent occurrence. As to, it is the method determining the moving pattern in which the pattern frequent occurrence is above special threshold and the weight is most a little bit required among moving patterns of the object as the optimal path. And also, it can search the optimal path more accurate and faster than existing methods($A^*$, Dijkstra algorithm) or with only using pattern frequent occurrence due to less accesses to nodes by using the heuristic moving history.
Journal of the Korean Society for Library and Information Science
/
v.35
no.4
/
pp.97-122
/
2001
This empirical study investigated the effect of choice of record field(s) upon which to search on retrieval performance for a large operational bibliographic database. The query terms used in the study were identified algorithmically from each target set in four different ways: (1) controlled terms derived from index term frequency weights, (2) uncontrolled terms derived from index term frequency weights. (3) controlled terms derived from inverse document frequency weights, and (4) uncontrolled terms based on universe document frequency weights. Su potable choices of record field were recognised. Using INSPEC terminology, these were the fields: (1) Abstract. (2) 'Anywhere'(i.e., ail fields). (3) Descriptors. (4) Identifiers, (5) 'Subject'(i.e., 'Descriptors' plus Identifiers'). and (6) Title. The study was undertaken in an operational web-based IR environment using the INSPEC bibliographic database. The retrieval performances were evaluated using D measure (bivariate in Recall and Precision). The main findings were that: (1) there exist significant differences in search performance arising from choice of field, using 'mean performance measure' as the criterion statistic; (2) the rankings of field-choices for each of these performance measures is sensitive to the choice of query : and (3) the optimal choice of field for the D-measure is Title.
Proceedings of the Korean Society For Composite Materials Conference
/
2002.10a
/
pp.233-236
/
2002
An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.
Engineers may encounter unpredictable cavities, sinkholes and karst conduits while tunneling in karst area, and water inrush disaster frequently occurs and endanger the construction safety, resulting in huge casualties and economic loss. Therefore, an optimal classification method based on grey system theory (GST) is established and applied to accurately predict the occurrence probability of water inrush. Considering the weights of evaluation indices, an improved formula is applied to calculate the grey relational grade. Two evaluation indices systems are proposed for risk assessment of water inrush in design stage and construction stage, respectively, and the evaluation indices are quantitatively graded according to four risk grades. To verify the accuracy and feasibility of optimal classification method, comparisons of the evaluation results derived from the aforementioned method and attribute synthetic evaluation system are made. Furthermore, evaluation of engineering practice is carried through with the Xiakou Tunnel as a case study, and the evaluation result is generally in good agreement with the field-observed result. This risk assessment methodology provides a powerful tool with which engineers can systematically evaluate the risk of water inrush in karst tunnels.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.2
/
pp.647-669
/
2016
Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.