• Title/Summary/Keyword: Optimal water supply management

Search Result 69, Processing Time 0.023 seconds

Economic-based approach for predicting optimal water pipe renewal period based on risk and failure rate

  • Kim, Kibum;Seo, Jeewon;Hyung, Jinseok;Kim, Taehyeon;Kim, Jaehag;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • This study suggests a method for calculating the benefits of water pipe renewal based on an estimate of the water supply suspension risk. The proposed method based on five benefit items is more direct and specific than other benefit estimation methods. In addition, a methodology evaluating the economics of pipe renewal based on pipe failure rate is proposed for estimating the optimal renewal point from an economic perspective. By estimating the optimal renewal period based on a yearly benefit cost ratio per pipe in a case study area, it was possible to draft an optimal renewal plan for the subject region from an economic perspective. Compared with other methodologies, a reasonable optimal renewal period was derived from an economic point of view. The result of this study may be used to develop future water pipe renewal plans. Moreover, the proposed methodologies and results derived from this study can be applied to asset management plans.

Development of Water Management System for Optimal Operation and Control in Wide-area Waterworks (광역상수도의 최적운영 및 제어를 위한 수운영시스템 개발)

  • 남의석;우천희;김학배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.489-497
    • /
    • 2003
  • A water management system is developed to reduce the unit cost of production in wide-area waterworks. Improving productivity in waterworks is to save power rate. We suggest a method to schedule the supply of water according to the time-varying power rate and pump control scheme. Water pipeline analysis package (SynerGEE Water) is utilized to obtain optimal pump control solution adaptation to water demand. Our evaluation results show that developed scheme is more efficient than the conventional.

Optimal Water Management for Classified Irrigation Area of Agricultural Reservoir by using Optimization Programming (최적화기법에 의한 농업용 저수지의 관개면적별 최적용수관리)

  • 차상화
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.439-446
    • /
    • 2003
  • In this paper, the study area is selected Sungju Reservoir which was constructed with an agricultural purpose and determined the optimal water management plan among the five cases of classified irrigation area by using Linear Programming. As a results of reservoir operation, the additional water quantity of classified irrigation area showed 16.036${\times}$10$\^$6/m$^3$3/year, 19.404${\times}$10$\^$6/m$^3$/year, 18.864${\times}$100$\^$6/m$^3$/year, 4.032${\times}$10$\^$6/m$^3$/year and 0.672${\times}$10$\^$6/m$^3$/year and the total water supply quantity showed 69.628${\times}$10$\^$6/m$^3$/year, 70.048${\times}$10$\^$6/m$^3$/year, 67.979${\times}$10$\^$ 6/m$^3$/year, 67.979${\times}$10$\^$6/m$^3$/year, and 69.939${\times}$10$\^$6/m$^3$/year respectively. Therefore, the case-II was adopted with water management plan of optimum. It is also known that the maximum irrigation area augmentation effect appears in the case which will use the additional water quantity in field irrigation of the case-II which was adopted.

Adaptive Management of Water Supply Systems to Deal with Climate Changes: A Gwangdong Dam Case Study (기후 변화 대응을 위한 상수도 시설 적응형 관리의 필요성: 2008-2009 광동댐 취수 제한 사례 연구)

  • Lee, Sangeun;Choi, Dongjin;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.583-598
    • /
    • 2009
  • From the engineering standpoint, this study puts a special emphasis on application of adaptive management. To do this, we analyze the recent issue about water scarcity of the Gwangdong dam. Using the system dynamics model, we defined the system including water balance in the dam, dam manager's operation rules, regional water supply and local water distribution, and customer damage. It was expected that the model is useful to explain the real case, and also water scarcity of Gwangdong led to total damage of about 2.56 billion won, mainly to customers in the Taebaeck city. Two adaptive management options (i.e., optimal allocation of limited water resources, and early control of dam storage) were applied to the model in order to examine whether adaptive management is effective to mitigate the damage, it is concluded that the case study could largely reduce or entirely avoid the damage with adaptive engineering options.

LONG-TERM RESERVOIR SEDIMENT MANAGEMENT CONSIDERING OTHER OPERATIONAL OBJECTIVES

  • Ko, Seok-Ku;Kim, Woo-Gu;Lee, Gwang-Man
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • The Yellow River Basin located in the Northern part of China is well-known not only as the seriously limited water sources but the greatest sediment-carrying stream in the world. The observed annual average sediment concentration in this area is $37.6kg/\textrm{mm}^3$, and 3.1% of the water volume is occupied by sediments. Due to the reason, water development has been extremely limited and it has been appeared as one of the most difficult problems in reservoir development and management. The major obstacle to surface water uses is reservoir sedimentation so that it has been strongly requested to seek the method managing sediment by optimal fashion. To solve this problem, KOWACO (Korea Water Resources Corporation) has developed various methods on the optimal reservoir management schemes including sediment management for the Upper Fenhe Basin Reservoir System at the cooperation project with Chinese. Information Variable Dynamic Programming. which is one of them, was developed for the reservoir sediment management and a set of non-dominated solutions are generated to choose the best alternative in water supply and reservoir sediment objective problem.

  • PDF

Development of IoT-Based Automatic Paddy Inlet for Efficient Water Management (효율적 물관리를 위한 IoT 기반 논 관개수로 자동 물꼬 개발)

  • Song, Soekho;Ahn, Chiyong;Song, Chulmin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This study aims to contribute to efficient paddy field water management by developing an IoT-based automatic paddy inlet that can consider water level changes according to variations in the supplied water quantity through irrigation channels. This IoT-based automatic paddy inlet not only ensures water level changes based on the supply of irrigation water but also secures irrigation efficiency. The effectiveness and efficiency of the developed IoT-based automatic paddy inlet were presented to contribute to efficient paddy field water management. As a result, the IoT-based automatic paddy inlet demonstrated the capability to maintain the optimal water level in the paddy field. Particularly, it exhibited up to 18.4% higher water resource usage efficiency compared to conventional paddy inlet, emphasizing the IoT-based automatic paddy inlet's advantage in terms of water resource usage.

Optimal Estimation of Water Use in the Large-Scale Basin (대규모 유역에서의 적정 용수이용량 산정)

  • Ryoo, Kyong-Sik;Hwang, Man-Ha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.3-10
    • /
    • 2007
  • In general method to estimate the water supplies in the large-scale basin, indirect estimation method such as unit loading factor method has been used. However, the estimated water supplies are much different to the real water supplies used in the any basin because these general methods estimate them considering water supply demands only. Especially, water supplies for irrigation are big different to the real water supplies in which the water supplies for irrigation are depend on the weather conditions such as evaporation, basin conditions such as infiltration, the reservoir operation rule for irrigation water, and distribution methods. Thus, a new estimation method is developed to estimate the real water demands which is essential factors for the effective water resources operation in the basin. This method is for estimating the water supplies and return rates based on the survey of the irrigation reservoirs and the analysis of effects to the stream flows, return flows, and water supplies for irrigation which water supplies and return rates are used in the basin water management model. The water supply usages in each subbasin are validated by comparisons between the simulated discharges from the basin water management model and the discharges measured in the control points.

Statistical Analysis of Irrigation Reservoir Water Supply Index (관개용저수지 용수공급지수(IRWSI)의 확률통계 분석)

  • 김선주;이광야;강상진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.58-66
    • /
    • 1998
  • Irrigation Reservoir Water Supply Index(IRWSI), which can be applied to the effective supply and management of the irrigation water resources, was developed. IRWSI was formulated as resealed nonexceedance probabilities of two hydrologic components : reservoir storage ratio and precipitation. To generate nonexceedance probability of hydrologic component, it was important to define the optimal one among the various probability distribution function in the state of nature. To define an optimal probability distribution, in this study, four types of probability distribution function were tested by the K-S fitting, and for the calculation of IRWSI, reservoir storage ratio(%) and precipitation used Normal distribution & Gamma distribution, respectively. In this study, the weight coefficients of a and b for each hydrologic component, which is precipitation and reservoir storage ratio, was decided as 0.8 and 0.2, respectively. While some studies changed weight coefficients according to the size of basin area, this study used same values without considering that. From the analysis of drought characteristics, it was found that the IRWSI was sensitive to the size of irrigation area rather than the size of basin area, and the south-eastern region of Korea had been suffered from severe drought damage.

  • PDF

A Study on the Method of Energy Evaluation in Water Supply Networks (상수관망의 에너지 평가기법에 관한 연구)

  • Kim, Seong-Won;Kim, Dohwan;Choi, Doo Yong;Kim, Juhwan
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.745-754
    • /
    • 2013
  • The systematic analysis and evaluation of required energy in the processes of drinking water production and supply have attracted considerable interest considering the need to overcome electricity shortage and control greenhouse gas emissions. On the basis of a review of existing research results, a practical method is developed in this study for evaluating energy in water supply networks. The proposed method can be applied to real water supply systems. A model based on the proposed method is developed by combining the hydraulic analysis results that are obtained using the EPANET2 software with a mathematical energy model on the MATLAB platform. It is suggested that performance indicators can evaluate the inherent efficiency of water supply facilities as well as their operational efficiency depending on the pipeline layout, pipe condition, and leakage level. The developed model is validated by applying it to virtual and real water supply systems. It is expected that the management of electric power demand on the peak time of water supply and the planning of an energy-efficient water supply system can be effectively achieved by the optimal management of energy by the proposed method in this study.

A study on the economical life of large-diameter water pipe: case study in P waterworks (대구경 상수도관로의 경제적수명 산정 연구: P상수도 사례연구)

  • Kim, Kibum;Seo, Jeewon;Choi, Taeho;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.37-45
    • /
    • 2018
  • This study develops a model to estimate the economic life of the large-diameter water supply pipeline in Korea by supplementing existing methods used to perform similar calculations. To evaluate the developed methodology, the model was applied to the actual target area with the conveyance pipe in P waterworks. The application yielded an economic life computation of 39.7 years, considering the cost of damages, maintenance, and renewal of the pipeline. Based on a sensitivity analysis of the derived results, the most important factor influencing the economic life expectancy was the predicted failure rate. The methodology for estimating the economic life of the water supply pipeline proposed in this study is one of the core processes of basic waterworks facility management planning. Therefore, the methods and results proposed in this study may be applied to asset management planning for water service providers.