• Title/Summary/Keyword: Optimal water management

Search Result 367, Processing Time 0.025 seconds

Water Resources Development Model by Using Bayesian Theory (베이지안 기법을 이용한 수자원개발 모델)

  • Kim, Jee-Hak;Bae, Young-Ju
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.1
    • /
    • pp.72-82
    • /
    • 1991
  • This study deals with the problem of water resources development by using bayesian theory. The purpose of this study is to develop the optimal decision model by applying bayesian theory which determine the optimal alternative in water resources development system. A relevant mathematical model to find an optimal solution formulated and then used in developing an efficient water resources that determine optimal alternative. A numerical example is solved to illustrate the algorithm developed.

  • PDF

Development of a Genetic Algorithm for the optimization in River Water Quality Management System (하천 수질관리 시스템에서 최적화를 위한 유전알고리즘의 개발)

  • 성기석;조재현
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.203-206
    • /
    • 2001
  • Finding the optimal solution in the river water quality management system is very hard with the non-linearity of the water quality model. Many suggested methods for that using the linear programming, non-linear programming and dynamic programming, are failed to give an optimal solution of sufficient accuracy and satisfaction. We studied a method to find a solution optimizing the river water quality management in the aspect of the efficiency and the cost of the waste water treatment facilities satisfying the water Quality goals. In the suggested method, we use the QUAL2E water quality model and the genetic algorithm. A brief result of the project to optimize the water quality management in the Youngsan river is presented.

  • PDF

Optimal design methodology of district metered area utilizing Geographic Information System (GIS를 이용한 상수관망 소블록 최적설계기법 개발)

  • Kim, Kyoung-Pil;Park, Yong-Gyun;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.223-231
    • /
    • 2015
  • District Metered Area (DMA) construction is one of the most cost effective alternatives for management of water loss (i.e., water leakage) and energy consumption (i.e., water pressure) in water distribution systems. Therefore, it's being implemented to numerous new and existing water distribution systems worldwide. However, due to the complexity of water distribution systems, especially large-scale and highly looped systems, it is still very difficult to define the optimal boundary of DMAs considering all the aspects of water distribution system management requirements. In this study, a DMA design methodology (or a DMA design model) was developed with Geographic Information Systems (GIS) and hydraulic distribution system model to determine the optimal DMA boundary.

Development of Water Quality Management Model for Rural Area Using Decision Support System (의사결정지원기법을 이용한 농촌유역 수질관리모형의 개발)

  • 양영민;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.783-788
    • /
    • 1999
  • In this study, a decision support system (DSS) was developed to calculate optimal wastetreatment cost, treatment level and treatment quantity of various pollutants for applying for in rural basin. The DSS includes a gegraphic informatino system (GIS), relational database system (RDBS), water quality models(Loading function , WASP5), watershed pollution load calculation module(SPLC), optimal water quality management plan to satisfy the water quality regulations. The system can be modified by user to trace the optimal condition for decision. The effort was conducted to apply the developed DSS to select the for optimal water quality management plan small rural basin called Kwanri Stream.

  • PDF

Development and application of hydro-economic optimal water allocation and management model (수자원-경제 통합 물 배분 최적화 모형의 개발 및 적용)

  • Jeong, Gimoon;Choi, Sijung;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.707-718
    • /
    • 2019
  • The optimal water allocation pursues a reliable and economic supply of water resources to meet various interests in socio-economic-environmental aspects. The global water shortage has intensified due to climate change and population growth with limited water resources. Thus, the water management scheme has shifted to improve water use efficiency by proper demand management and water allocation planning. Here, a hydro-economic water allocation model, called WAMM (Water Allocation and Management Model) is introduced. The WAMM is equipped with an improved linear programming algorithm for optimal water allocation and estimates economic value of water supply as an objective of water

Optimal Groundwater Management Model for Coastal Regions Using Parallel Genetic Algorithm

  • Park, Nam Sik;Hong, Sung Hun;Shim, Myung Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.77-89
    • /
    • 2004
  • A computer model is developed to assess optimal ground water pumping rates and optimal locations of wells in a coastal region. A sharp interface model is used to simulate the freshwater and salt water flows. Drawdown, upconing, saltwater intrusion and the contamination of well are considered in this model. A genetic algorithm with parallel processing is used to identify the optimal solution.

  • PDF

Optimal Water Management for Classified Irrigation Area of Agricultural Reservoir by using Optimization Programming (최적화기법에 의한 농업용 저수지의 관개면적별 최적용수관리)

  • 차상화
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.439-446
    • /
    • 2003
  • In this paper, the study area is selected Sungju Reservoir which was constructed with an agricultural purpose and determined the optimal water management plan among the five cases of classified irrigation area by using Linear Programming. As a results of reservoir operation, the additional water quantity of classified irrigation area showed 16.036${\times}$10$\^$6/m$^3$3/year, 19.404${\times}$10$\^$6/m$^3$/year, 18.864${\times}$100$\^$6/m$^3$/year, 4.032${\times}$10$\^$6/m$^3$/year and 0.672${\times}$10$\^$6/m$^3$/year and the total water supply quantity showed 69.628${\times}$10$\^$6/m$^3$/year, 70.048${\times}$10$\^$6/m$^3$/year, 67.979${\times}$10$\^$ 6/m$^3$/year, 67.979${\times}$10$\^$6/m$^3$/year, and 69.939${\times}$10$\^$6/m$^3$/year respectively. Therefore, the case-II was adopted with water management plan of optimum. It is also known that the maximum irrigation area augmentation effect appears in the case which will use the additional water quantity in field irrigation of the case-II which was adopted.

A Study on the Management Plan of Water Environment of Ferns in the Interior Landscape (실내조경에 있어서 양치식물의 수분환경 관리방안에 관한 연구)

  • 주진희;방광자;설종호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.122-131
    • /
    • 1999
  • Indoor environments are usually less than optimal for the growth of ferns, especially in regards to the water condition. These studies were performed to investigate responses involved in causing growth of ferns and presume management plan against the water deficit under indoor conditions. The effect of air humidity and soil moisture on the ferns was examined in Adiantume raddianum and Selaginella kraussiana. Results of experiments are as follows; 1. Under a low humidity condition, having a 25-50% RH. ornamental value of ferns decreased much more than under a 90% RH. Under a low soil moisture, such as sand treatment, ornamental value of ferns also decreased. 2. Leaf chlorophyll content, water content and stomata situations increased as air humidity and soil moisture went up. 3. Even if air humidity and soil water were not enough for ferns growth, the extending of irrigation cycle was helpful. 4. Under extremely low air humidity conditions, some water management, namely, using water holding soil or extending of irrigation cycle was desirable. Other methods of increasing air humidity, including water instruments such as ornamental pools, waterfalls, or fountains, grouping plants together were also helpful. But spraying water on leaves increased injury to ferns growth because of excess evaporation from the leaves. Though these studies, we learn that ferns are susceptible to water condition such as air humidity, soil water and water management. If other environmental factos are maintained with optimal conditions, water condition plays an important role in ferns growth in indoor environments.

  • PDF

Behaviour Analysis of Irrigation Reservoir Using Open Water Management Program (개방형 물관리 프로그램을 이용한 관개용 저수지의 거동 분석)

  • Kim, Sun-Joo;Kim, Phil-Shik;Lim, Chang-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.3-13
    • /
    • 2004
  • For optimal irrigation reservoir operation during flood and normal period, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. We developed Open Water Management Program (OWMP) with an open architecture to deal with newly arising upgrade problems for optimal management of irrigation reservoir. And we evaluated the applicability of OWMP to estimate daily runoff from an agricultural watershed including irrigation reservoirs, and analyzed behaviour of irrigation reservoirs as irrigation water requirements considering frequency analysis of reservoir storage and frequency analysis water requirements for effective management of reservoir. When we executed OWMP with data produced from an experimental field, IHP basins, the mean relative errors of application of daily runoff and irrigation water requirement were less than 5%. We also applied OWMP to a Seongju irrigation reservoir to simulate daily runoff, storage and water requirement from 1998 to 2002, and the mean model efficiency between measured and simulated value was 0.76. Our results based on the magnitude of relative errors and model efficiency of the model simulation indicate that the OWMP can be a tool nicely adapted to the effective water management of irrigation reservoir for beneficial water use and flood disaster management.

LONG-TERM RESERVOIR SEDIMENT MANAGEMENT CONSIDERING OTHER OPERATIONAL OBJECTIVES

  • Ko, Seok-Ku;Kim, Woo-Gu;Lee, Gwang-Man
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • The Yellow River Basin located in the Northern part of China is well-known not only as the seriously limited water sources but the greatest sediment-carrying stream in the world. The observed annual average sediment concentration in this area is $37.6kg/\textrm{mm}^3$, and 3.1% of the water volume is occupied by sediments. Due to the reason, water development has been extremely limited and it has been appeared as one of the most difficult problems in reservoir development and management. The major obstacle to surface water uses is reservoir sedimentation so that it has been strongly requested to seek the method managing sediment by optimal fashion. To solve this problem, KOWACO (Korea Water Resources Corporation) has developed various methods on the optimal reservoir management schemes including sediment management for the Upper Fenhe Basin Reservoir System at the cooperation project with Chinese. Information Variable Dynamic Programming. which is one of them, was developed for the reservoir sediment management and a set of non-dominated solutions are generated to choose the best alternative in water supply and reservoir sediment objective problem.

  • PDF