• Title/Summary/Keyword: Optimal trajectory

Search Result 363, Processing Time 0.021 seconds

Swarm Intelligence-based Optimal Design for Selecting the Kinematic Parameters of a Manipulator According to the Desired Task Space Trajectory (요청한 작업 경로에 따른 매니퓰레이터의 기구학적 변수 선정을 위한 군집 지능 기반 최적 설계)

  • Lee, Joonwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.504-510
    • /
    • 2016
  • Robots are widely utilized in many fields, and various demands need customized robots. This study proposes an optimal design method based on swarm intelligence for selecting the kinematic parameter of a manipulator according to the task space trajectory desired by the user. The optimal design method is dealt with herein as an optimization problem. This study is based on swarm intelligence-based optimization algorithms (i.e., ant colony optimization (ACO) and particle swarm optimization algorithms) to determine the optimal kinematic parameters of the manipulator. The former is used to select the optimal kinematic parameter values, whereas the latter is utilized to solve the inverse kinematic problem when the ACO determines the parameter values. This study solves a design problem with the PUMA 560 when the desired task space trajectory is given and discusses its results in the simulation part to verify the performance of the proposed design.

Reference Trajectory Analysis of Atmosphere Re-entry for Space Vehicle (우주비행체의 대기권 재진입 기준궤적 해석)

  • 이대우;조겸래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.111-118
    • /
    • 2000
  • The design of reference trajectory with respect to drag acceleration is necessary to decelerate from hypersonic speed safely after atmosphere re-entry of space vehicle. The re-entry guidance design involves trajectory optimization, generation of a reference drag acceleration profile with the satisfaction of 6 trajectory constraints during the re-entry flight. This reference drag acceleration profile can be considered as the reference trajectory. The cost function is composed of the accumulated total heating on vehicle due to the reduction of weight. And a regularization is needed to prevent optimal drag profile from varying too fast and achieve realized trajectory. This paper shows the relations between velocity, drag acceleration and altitude in drag acceleration profile, and how to determine the reference trajectory.

  • PDF

Trajectory optimization for galloping quadruped robots (4 족보행 로봇의 갤로핑 궤적의 최적화)

  • Chae, Key-Gew;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.831-836
    • /
    • 2007
  • This paper proposes an optimal galloping trajectory which costs low energy and guarantees the stability of the quadruped robot. In the realization of the fast galloping, the trajectory design is important. As a galloping trajectory, we propose an elliptic leg trajectory, which provides simplified locomotion to complex galloping motions of animals. However, the elliptic trajectory, as an imitation of animal galloping motion, does not guarantee stability and minimal energy consumption. We propose optimization based on the energy and stability using a genetic algorithm, which provides the robust and global solution to a multi-body, highly nonlinear dynamic system. To evaluate and verify the effectiveness of the proposed trajectory, computer simulations were carried out.

  • PDF

Development of an automatic trajectory planning system(ATPS) for painting robots (페인팅로보트의 자동궤적계획시스템 개발에 관한 연구)

  • 서석환;우인기;노성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.394-399
    • /
    • 1990
  • We develop an automatic trajectory planning system (ATPS) for painting robots by proposing a new trajectory planning scheme. The new scheme considers geometric modeling, painting mechanics, and robot dynamics to output an optimal trajectory (in the sense of coating thickness and painting time) based on the CAD data describing the shape of objects, The new scheme is implemented in SUN/4 workstation to develop an ATPS for painting robots. To test the validity of the new scheme and to illustrate the developed system, numerous runs are performed and analyzed.

  • PDF

OPTIMAL TRAJECTORY CORRECTION MANEUVER DESIGN USING THE B-PLANE TARGETING METHOD FOR FUTURE KOREAN MARS MISSIONS (B-평면 조준법을 이용한 화성 탐사선의 궤적 보정을 위한 최적의 기동 설계)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Joon-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.451-462
    • /
    • 2005
  • Optimal Trajectory Correction Maneuver (TCM) design algorithm has been developed using the B-plane targeting method for future Korean Mars missions. For every-mission phase, trajectory informations can also be obtained using this developed algorithms which are essential to design optimal TCM strategy. The information were computed under minimum requiring perturbations to design Mars missions. Spacecraft can not be reached at designed aim point because of unexpected trajectory errors, caused by many perturbations and errors due to operating impulsive maneuvers during the cruising phase of missions. To maintain spacecraft's appropriate trajectory and deliver it to the designed aim point, B-plane targeting techniques are needed. A software NPSOL is used to solve this optimization problem, with the performance index of minimizing total amount of TCM's magnitude. And also executing time of maneuvers on be controlled for the user defined maneuver number $(1\~5)$ of TCMs. The constraints, the Mars arrival B-plane boundary conditions, are formulated for the problem. Results of this work show the ability to design and analyze overall Mars missions, from the Earth launch phase to Mars arrival phase including capture orbit status for future Korean Mars missions

Synchronized On-line Trajectory Generation Method for Mechanical System with Multiple Degrees-of-Freedom (다자유도 기계 시스템의 모션 제어를 위한 동기된 온라인 궤적 생성 방법)

  • Won, Daehee;Shin, Eunchol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1385-1391
    • /
    • 2017
  • This work presents a synchronized on-line trajectory generation algorithm for mechanical system with multiple degrees-of-freedom. Proposed algorithm is designed to generate time-optimized trajectories and synchronized trajectories under the constraints such as maximum speed, acceleration, deceleration, non-zero initial velocity, etc. Also, because of small computation time, therefore this can be applied in real-time and it is easier to change the trajectory when an event occurs. We verified the feasibility through various trajectory generation.

Genetic Algorithm-Based Optimal Walking Trajectory Generation for Biped Walking Robot (유전 알고리즘 기반의 최적 이족 로봇 보행 생성에 관한 연구)

  • Han, Kyoung-Soo;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.169-172
    • /
    • 2002
  • This paper is concerned with walking trajectory generation by applying the genetic algorithm. The walking trajectory is generated though three via-points and genetic algorithm is employed to find velocity and acceleration at each via-point. Also genetic algorithm is applied for balancing joint trajectory. Fitness function is used for minimizing the trajectory. As a result, new algorithm generated the smooth trajectory. The proposed algorithm is verified by the experiment of biped walking robot developed in our Control laboratory, and we compared the result with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

A Trajectory Substitution Privacy Protection Scheme in location-based services

  • Song, Cheng;Zhang, Yadong;Gu, Xinan;Wang, Lei;Liu, Zhizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4771-4787
    • /
    • 2019
  • Aimed at the disclosure risk of mobile terminal user's location privacy in location-based services, a location-privacy protection scheme based on similar trajectory substitution is proposed. On the basis of the anonymized identities of users and candidates who request LBS, this scheme adopts trajectory similarity function to select the candidate whose trajectory is the most similar to user's at certain time intervals, then the selected candidate substitutes user to send LBS request, so as to protect user's privacy like identity, query and trajectory. Security analyses prove that this scheme is able to guarantee such security features as anonymity, non-forgeability, resistance to continuous query tracing attack and wiretapping attack. And the results of simulation experiment demonstrate that this scheme remarkably improve the optimal candidate' trajectory similarity and selection efficiency.

Triangulation Based Skeletonization and Trajectory Recovery for Handwritten Character Patterns

  • Phan, Dung;Na, In-Seop;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.358-377
    • /
    • 2015
  • In this paper, we propose a novel approach for trajectory recovery. Our system uses a triangulation procedure for skeletonization and graph theory to extract the trajectory. Skeletonization extracts the polyline skeleton according to the polygonal contours of the handwritten characters, and as a result, the junction becomes clear and the characters that are touching each other are separated. The approach for the trajectory recovery is based on graph theory to find the optimal path in the graph that has the best representation of the trajectory. An undirected graph model consisting of one or more strokes is constructed from a polyline skeleton. By using the polyline skeleton, our approach accelerates the process to search for an optimal path. In order to evaluate the performance, we built our own dataset, which includes testing and ground-truth. The dataset consist of thousands of handwritten characters and word images, which are extracted from five handwritten documents. To show the relative advantage of our skeletonization method, we first compare the results against those from Zhang-Suen, a state-of-the-art skeletonization method. For the trajectory recovery, we conduct a comparison using the Root Means Square Error (RMSE) and Dynamic Time Warping (DTW) in order to measure the error between the ground truth and the real output. The comparison reveals that our approach has better performance for both the skeletonization stage and the trajectory recovery stage. Moreover, the processing time comparison proves that our system is faster than the existing systems.

Optimal Tuning of Nonlinear Parameters of a Dual-Input Power System Stabilizer Based on Analysis of Trajectory Sensitivities (궤도민감도 분석에 기반하여 복입력 전력시스템 안정화 장치(Dual-Input PSS)의 비선형 파라미터 최적화 기법)

  • Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.915-923
    • /
    • 2008
  • This paper focuses on optimal tuning of nonlinear parameters of a dual-input power system stabilizer(dual-input PSS), which can improve the system damping performance immediately following a large disturbance. Until recently, various PSS models have developed to bring stability and reliability to power systems, and some of these models are used in industry applications. However, due to non-smooth nonlinearities from the interaction between linear parameters(gains and time constants of linear controllers) and nonlinear parameters(saturation output limits), the output limit parameters cannot be determined by the conventional tuning methods based on linear analysis. Only ad hoc tuning procedures('trial and error' approach) have been used. Therefore, the steepest descent method is applied to implement the optimal tuning of the nonlinear parameters of the dual-input PSS. The gradient required in this optimization technique can be computed from trajectory sensitivities in hybrid system modeling with the differential-algebraic-impulsive-switched(DAIS) structure. The optimal output limits of the dual-input PSS are evaluated by time-domain simulation in both a single machine infinite bus(SMIB) system and a multi-machine power system in comparison with those of a single-input PSS.