• Title/Summary/Keyword: Optimal technology

Search Result 8,930, Processing Time 0.038 seconds

AN APPROXIMATE ALTERNATING LINEARIZATION DECOMPOSITION METHOD

  • Li, Dan;Pang, Li-Ping;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1249-1262
    • /
    • 2010
  • An approximate alternating linearization decomposition method, for minimizing the sum of two convex functions with some separable structures, is presented in this paper. It can be viewed as an extension of the method with exact solutions proposed by Kiwiel, Rosa and Ruszczynski(1999). In this paper we use inexact optimal solutions instead of the exact ones that are not easily computed to construct the linear models and get the inexact solutions of both subproblems, and also we prove that the inexact optimal solution tends to proximal point, i.e., the inexact optimal solution tends to optimal solution.

ROBUST PORTFOLIO OPTIMIZATION UNDER HYBRID CEV AND STOCHASTIC VOLATILITY

  • Cao, Jiling;Peng, Beidi;Zhang, Wenjun
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1153-1170
    • /
    • 2022
  • In this paper, we investigate the portfolio optimization problem under the SVCEV model, which is a hybrid model of constant elasticity of variance (CEV) and stochastic volatility, by taking into account of minimum-entropy robustness. The Hamilton-Jacobi-Bellman (HJB) equation is derived and the first two orders of optimal strategies are obtained by utilizing an asymptotic approximation approach. We also derive the first two orders of practical optimal strategies by knowing that the underlying Ornstein-Uhlenbeck process is not observable. Finally, we conduct numerical experiments and sensitivity analysis on the leading optimal strategy and the first correction term with respect to various values of the model parameters.

Optimal ES (Energy Storage) Service Selection Method (에너지 저장기술의 최적 서비스 선정 방법)

  • Ji Hyun Lee;Seong Jegarl;Hyunshil Kim;JongHo Maeng
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.58-65
    • /
    • 2023
  • The expanding significance of energy storage (ES) technology is increasing the acceptability of power systems by augmenting renewable energy supply. To deploy such ES technologies, we must select the optimal technology that meets the requirements of the system and confirm the technical and economic feasibility of the business model based on it. Herein, we propose a method and tool for selecting the optimal ES technology and service suitable for meeting the requirements of the system, based on its performance characteristics. The method described in this study can be used to discover and apply various ES technologies and develop business models with excellent economic feasibility.

Optimal design for the reinforced concrete circular isolated footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo;Velazquez-Santillan, Francisco
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.273-294
    • /
    • 2019
  • In this paper is presented the minimum cost (optimal design) for reinforced concrete circular isolated footings based on an analytic model. This model considers a load and two moments in directions of the X and Y axes, and the pressure has a variation linear, these are the effects that act on the footing. The minimum cost (optimal design) and the Maple program are shown in Flowcharts. Two numerical experiments are shown to obtain the minimum cost design of the two materials that are used for a circular footing supporting an axial load and moments in two directions in accordance to the code of the ACI (American Concrete Institute), and it is compared against the current design (uniform pressure). Also, the same examples are developed through the normal procedure to verify the minimum cost (optimal design) presented in this document, i.e., the equations of moment, bending shear and punching shear are used to check the thickness, and after, the steel areas of the footing are obtained, and it is compared against the current design (uniform pressure). Results section show that the optimal design is more accurate and more economical than to any other model. Therefore, it is concluded that the optimized design model presented in this paper should be used to obtain the minimum cost design for the circular isolated footings.

Optimal Placement of Sensors and Actuators Using Measures of Modal Controllability and Observability in a Balanced Coordinate

  • Park, Un-Sik;Choi, Jae-Weon;Yoo, Wan-Suk;Lee, Man-Hyung;Son, Kwon;Lee, Jang-Myung;Lee, Min-Cheol;Han, Sung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 2003
  • In this paper, a method for optimal placement of sensors and actuators is presented by using new measures of modal controllability and observability defined in a balanced coordinate system. The proposed new measures are shown to have a great advantage in practical use when they are used as criteria for selecting the locations of sensors and actuators, since the most controllable and observable locations can be obtained to be identical. In addition, they are more accurate than the measures of Hamdan and Nayfeh in that the effects of the eigenvector norm are considered into the magnitude of measures. In simulations, to verify the effectiveness of the proposed measures and optimal placement method, the closed-loop response of a simply supported flexible beam, in which the number and locations of actuators are determined by using the proposed measures and optimal placement method, has been examined and compared with the case of Hamdan and Nayfeh’s measures.

Optimal Design of Slim TV Wall Mount Arm with Cantilever Structure (외팔보 구조의 슬림형 TV 월마운트암의 최적설계)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.167-172
    • /
    • 2011
  • This paper investigated optimal design for slim wall mount arm for flat TV. Recently the number of flat TV sets in use went on increasing in TV market. As the flat TV sets are getting common, consumers came to need another requirements like aesthetic factor besides display performances. As the new TV sets tend to be slimmer due to aesthetic design, Wall mount also requires to be slimmer for aesthetic balance. Slim structures, however, are vulnerable to structural rigidity. In this study, slim wall mount arm has been designed by 3D CAD and DOE (Design of Experiments) and finite element analysis for optimal structural design were carried out to determine the design variables for minimize working stress of wall mount arm. Finally two optimal design conditions were selected through DOE and FEM and one of those was chosen under constraint of minimizing blanking developed length.

Optimal Design for Injection Molding Processes using Design of Experiments and Finite Element Analysis (실험계획법과 유한요소해석을 연계한 사출성형 공정의 최적설계)

  • Park K.;Ahn J. H.;Choi S.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.150-153
    • /
    • 2001
  • The present work concerns optimal design for the injection molding process of a deflection yoke (coil separator). The optimal design for the injection molding process is developed using design of experiments and finite element analysis. Two design of experiments approaches are applied such as: the design of experiment for mold design and the design the experiments for determination of process parameters. Finite element analyses have been carried out as a design of experiments for mold design: runner system and cooling channel. In order to determine optimal process experiments have been performed for various process conditions with the design of experiments scheduling.

  • PDF

A Study of Optimal Impact Angle Control Laws (최적 충돌각 제어법칙에 관한 연구)

  • 송택렬;신상진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.211-218
    • /
    • 1998
  • As a part of trajectory modulation to increase system survivability and terminal effectiveness, impact angle control is required in the terminal phase of tactical missile systems. The missile systems are not allowed to have high altitude to reduce probability of detection by sensors of missile defense systems. In this paper, an analytic form of a time-optimal control law is suggested in the case of constrained missile maneuverability and impact angle under the assumption of a zero-lag autopilot. The control law is obtained by establishing optimal missile-target engagement geometry in the vertical plane. Extension of the law for missiles with autopilot response lags requiring a numerical solution is studied by introducing an iterative algorithm for optimal switching time determination of which the initial switching instants are obtained from the analytic solution. Also suggested is a closed-form impact angle control law derived by an energy-optimal approach. The performances of the proposed guidance laws are evaluated by a series of computer runs.

  • PDF

Performance Evaluation of Bluetooth Radio Link with ARQ Protocol (ARQ를 고려한 블루투스 무선 링크의 성능 분석)

  • Park, Hong-Seong;Jung, Myoung-Soon
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.59-64
    • /
    • 2001
  • This paper analyzes the performance of the several types of ACL(Asynchronous ConnectionLess) packets used in Bluetooth according to a BER(Bit Error Rate) and a packet length and proposes an optimal packet type and an optimal size of the packet being able to be used under the given BER. This paper proposes how to obtain the optimal packet type and the optimal size of the packet maximizing the performance measure under the given BER. In addition, this paper shows that the optimal type and size of the packet maximizing the throughput are different from those maximizing the mean transmission time. This occurs because the Bluetooth uses not only one type of packet but also various types of packets.

  • PDF

Process Optimal Design in Steady-State Meta Forming considering Strain-Hardening (변형률 경화를 고려한 정상상태 소성가공 공정의 공정 최적설계)

  • 황숭무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.40-43
    • /
    • 2000
  • A process optimal design methodology applicable to steady-state forming with a strain-hardening material is presented. in this approach the optimal design problem is formulated on the basis of a rigid-viscoplastic finite element process model and a derivative based approach is adopted as an optimization technique The process model the schemes for the evaluation of the design sensitivity considering the effect of strain-hardening and an iterative procedure for design optimization are described. the validity of the proposed approach is demonstrated through application to die shape optimal design in extrusion.

  • PDF