• Title/Summary/Keyword: Optimal storage-capacity

Search Result 164, Processing Time 0.03 seconds

A study on the distribution system using Flexible Reliable Intelligent Electrical eNergy Delivery System (FRIENDS(Flexible Reliable Intelligent Electrical eNergy Delivery System)를 이용한 배전계통의 효율적인 운용방안 개발)

  • Kim, Yong-Ha;Lee, Hyeong-No;Jo, Jae-Han;No, Dae-Seok;Lee, Beom;Choi, Sang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1059-1062
    • /
    • 1998
  • This paper which can simulate FRIENDS(Flexible Reliable Intelligent Electrical eNergy Delivery System) model of distribution electrical system presents a new algorithm. In the operation of FRIENDS model, dispersed energy storage(DES) systems have an important role. We can use the active and reactive power of DES to control customer's voltage. In this, the former means load levelling operation and the later means voltage control operation of DES. We focus our research on load levelling operation of DES. We develope an algorithm to get an optimal capacity and operation schedule of DES and then apply it to the FRIENDS model. The results show the effectiveness of the proposed method.

  • PDF

Trust Evaluation Metrics for Selecting the Optimal Service on SOA-based Internet of Things

  • Kim, Yukyong
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.129-140
    • /
    • 2019
  • In the IoT environment, there is a huge amount of heterogeneous devices with limited capacity. Existing trust evaluation methods are not adequate to accommodate this requirement due to the limited storage space and computational resources. In addition, since IoT devices are mainly human operated devices, the trust evaluation should reflect the social relations among device owners. There is also a need for a mechanism that reflects the tendency of the trustor and environmental factors. In this paper, we propose an adaptable trust evaluation method for SOA-based IoT system to deal with these issues. The proposed model is designed to minimize the confidence bias and to dynamically respond to environmental changes by combining direct evaluation and indirect evaluation. It is expected that it will be possible to secure trust through quantitative evaluation by providing feedback based on social relationships.

Determination of Optimal Location of Washlands Considering Design Frequency (설계빈도변화를 고려한 천변저류지 최적위치 선정)

  • Baek, Chun-Woo;Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.559-569
    • /
    • 2009
  • Due to environmental, economical and the other limitations, it has been more difficult to construct new large hydraulic structure such as dam. For this reason, it has been tried to use small hydraulic structure such as washland as alternative of hydraulic facility. Because the flood control effect of small hydraulic structure are affected by runoff volume, hydrograph, storage capacity and weir crest elevation, and design frequency must be predetermined for the design of the hydraulic structure. Multiple washlands will be required to satisfy enough peak reduction effect so that considering washlands as a network, rather than individually, are critical to analysis of flood reduction effect. In this study, new index for determination of optimal location for washlands is presented and the existing model for this determination is modified by adopting the new index. Developed new model is applied to Ansung river basin for examination and the new model shows its' applicability as a decision making criteria for the determination of optimal location for washlands.

Estimation of Inflows to Jangchan Reservoir from Outside Watershed by Minimizing Reservoir Water Storage Errors (저수량 오차에 의한 장찬저수지의 유역외 유입량 추정)

  • Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.61-68
    • /
    • 2010
  • Jangchan reservoir is located in Okcheon county, Chungbuk province, of which watershed area is $29.4\;km^2$ from outside, and $5.1\;km^2$ from inside watershed, effective storage capacity is $392{\times}10^4\;m^3$, paddy area to be irrigated is 474 ha. To determine inflows from Keumcheon weir located in outside watershed on an optimum level, a repeated procedure which is composed of simulation of inflows to Keumcheon weir, setting of range of water taking at Keumcheon weir, simulation of inflows to Jangchan reservoir, estimation of paddy water from Jangchan reservoir, and simulation of water storages in Jangchan reservoir was selected. Parameters of DAWAST model for simulating inflows to Jangchan reservoir were determined to UMAX of 315 mm, LMAX of 21 mm, FC of 130 mm, CP of 0.018, and CE of 0.007 with absolute sum of errors in reservoir water storages minimized using unconstrained Simplex method because of no inflows data. Inflows to Keumcheon weir were simulated to $2,132{\times}10^4\;m^3$ on an annual average. Optimal range of water taking at Keumcheon weir to transfer to Jangchan reservoir were $0.81{\sim}50\;mm/km^2/d$, which were summed up to $1,397{\times}10^4\;m^3$ in 66% of total on an annual average. Inflows to Jangchan reservoir were simulated to $1,739{\times}10^4\;m^3$ on an annual average of which were 80 % from Keumcheon weir of outside watershed. Requirements to paddy water from Jangchan reservoir were estimated to $543{\times}10^4\;m^3$ on an annual average.

The development of a new type of functional fresh apple juice using prebiotic fibers, ginger extract, and cardamom essential oil: Antioxidant capacity and chemical analysis

  • Hamed Hassanzadeh;Mohammadyar Hosseini;Yaseen Galali;Babak Ghanbarzadeh
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.743-757
    • /
    • 2023
  • The formulation of a novel functional fresh apple juice enriched with dietary prebiotic fiber (inulin or polydextrose), ginger extract (GE), and cardamom essential oil (CEO) was carried out based on a combined D-optimal design. In the first stage, sensory evaluation was performed to screen and select the optimum sample for further experiments. The sensory evaluation showed that the sample containing inulin 0.25 g/100 g GE and 0.03 g/100 g CEO had the highest organoleptic score. In the second stage, various chemical experiments, including pH, acidity, formalin index, total phenol, flavonoids, antioxidant capacity, and vitamin C content, were evaluated on the selected enriched apple juices. The addition of GE and CEO caused changes in nutritional characteristics, including antioxidant capacity, total phenol, flavonoids, vitamin C, and IC50, from 35 g/100 g, 350 mg GAE/g, 17 mg/L, 370 mg/kg, and 1,800 mg/kg to 45 g/100 g, 460 mg GAE/g, 21 mg/L, 420 mg/kg, and 1,200 mg/kg respectively. The steady shear flow and dynamic oscillatory shear rheological tests were also performed on the screened samples, and results showed that the addition of dietary fiber in apple juices increased the apparent viscosity, storage modulus, loss modulus, and complex viscosity. In general, adding plant extracts and processed essential oil to apple juice increased the nutritional-nutraceutical value and sensory attributes of apple juice.

Optimization Design of Solar Water Heating System based on Economic Evaluation Criterion using a Genetic Algorithm (유전알고리즘 이용 경제적 평가기준에 따른 태양열급탕시스템 최적화 설계에 관한 연구)

  • Choi, Doosung;Ko, Myeongjin;Park, Kwang-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.73-89
    • /
    • 2016
  • To assure maximum economic benefits and the energy performance of solar water heating systems, the proper sizing of components and operating conditions need to be optimized. In recent years, a number of studies to design optimally solar water heating systems have been tried. This paper presents a design method for optimizing the various capacity-related and installation-related design variables based on life cycle cost using a genetic algorithm. The design variables considered in this study included the types and numbers of solar collector and auxiliary heaters; the types of storage tanks and heat exchangers; the solar collector slope; mass flow rates of the fluid on the hot and cold sides. The suggested method was applied for optimizing a solar water heating system for an elementary school in Seoul, South Korea. In addition, the effectiveness of the proposed optimization method was assessed by analyzing the obtained optimal solutions of six case studies, each of which was simulated with different solar fractions. It is observed that a trade-off between the equipment cost and the energy cost results in an optimal design that yields the lowest life cycle cost. Therefore, it could be helpful to apply the optimal solar water heating system by comparing the various design solutions obtained by using the optimization method instead of the engineer's experience and intuition.

An Efficient Method for Estimating Optimal Path of Secondary Variable Calculation on CFD Applications (전산유체역학 응용에서의 효율적인 최적 2차 변수 계산 경로 추정 기법)

  • Lee, Joong-Youn;Kim, Min Ah;Hur, Youngju
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.1-9
    • /
    • 2016
  • Computational Fluid Dynamics(CFD) is a branch of fluid mechanics that solves partial differential equations which represent fluid flows by a set of algebraic equations using computers. Even though it requires multifarious variables, only selected ones are stored because of the lack of storage capacity. It causes the requirement of secondary variable calculations at analyzing time. In this paper, we suggest an efficient method to estimate optimal calculation paths for secondary variables. First, we suggest a converting technique from a dependency graph to a ordinary directed graph. We also suggest a technique to find the shortest path from any initial variables to target variables. We applied our method to a tool for data analysis and visualization to evaluate the efficiency of the proposed method.

Determining the Optimal Capacities of Distributed Generators Installed in A Stand-alone Microgrid Power System (독립형 마이크로그리드 내 분산전원별 최적용량 결정 방법)

  • Ko, Eun-Young;Baek, Ja-Hyun;Kang, Tae-Hyuk;Han, Dong-Hwa;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • In recent years, the power demand has been increasing steadily and the occurrence of maximum power demand has been moving from the summer season to the winter season in Korea. And since the control of electric power supply and demand is more important under those situations, a micro-grid system began to emerge as a keyword for the sTable operation of electric power system. A micro-gird power system is composed of various kinds of distributed generators(DG) such as small diesel generator, wind turbine, photo-voltaic generator and energy storage system(ESS). This paper introduces a method to determine the optimal capacities of the distributed generators which are installed in a stand-alone type of microgrid power system based on the fundamental proportion of diesel generator. At first, the fundamental proportion of diesel generator will be determined by changing from 0 to 50 percent. And then we will optimize the capacities of renewable energy resources and ESS according to load patterns. Lastly, after recalculating the capacity of ESS with consideration for SOC constraints, the optimal capacities of distributed generators will be decided.

A Study on Optimization Design of Off-grid Hybrid Power Generation System (독립형 하이브리드발전시스템 최적설계에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Lee, Suk-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.247-252
    • /
    • 2015
  • The majority of electric power in the domestic manned islands with off-grid power system is supplied by the diesel generators. However, in the case of off-grid islands the fuel cost is more expensive to inland areas and difficult to transport them to islands. So the development of renewable energy system using natural resource have been recently introduced. But renewable energy that depend on the natural environment, it is necessary to organized the hybrid system with existing diesel engine because the energy is difficult to maintain stable electric power. This paper presents the results of a feasibility study of hybrid system with energy storage system such as wind, solar, battery and diesel engine. The study included off-grid island as the Seogeochado islands located in Jeolanamdo Province. And, the paper proposed a optimal capacity of hybrid system configuration to maintain carbon free with minimum investment cost. the analysis of economic adaptability performed by HOMER program.

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).