• Title/Summary/Keyword: Optimal sizing

Search Result 179, Processing Time 0.027 seconds

Optimal Sizing Method of Distributed Energy Resources for a Stand-alone Microgrid by using Reliability-based Genetic Algorithm (신뢰도 기반의 유전자알고리즘을 활용한 독립형 마이크로그리드 내 분산형전원 최적용량 산정 방법)

  • Baek, Ja-Hyun;Han, Soo-Kyung;Kim, Dae-Sik;Han, Dong-Hwa;Lee, Hansang;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.757-764
    • /
    • 2017
  • As the reduction of greenhouse gases(GHGs) emission has become a global issue, the microgrid markets are growing rapidly. With the sudden changes in the market, Korean government suggested a new business model called 'Self-Sufficient Energy Islands'. Its main concern is a stand-alone microgrid composed of Distributed Energy Resources(DERs) such as Renewable Energy Sources(RESs), Energy Storage System(ESS) and Fuel Cell, in order to minimize the emission of GHGs. According to these trend, this paper is written to propose an optimal sizing method of DERs in a stand-alone microgrid by using Genetic Algorithm(GA), one of the representative stochastic methods. It is to minimize the net present cost with the variables, size of RESs and ESS. In the process for optimization, the sunless days are considered as additional constraints. Through the case study analysis, the size of DERs installed in a microgrid system has been computed using the proposed method in MATLAB. And the result of MATLAB is compared with that of HOMER(Hybrid Optimization of Multiple Energy Resources), a well-known energy modeling software.

Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames

  • Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.323-347
    • /
    • 2014
  • This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-column connections based on the HS-PSO algorithm. The developed code selects suitable sections for beams and columns, from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-${\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark design examples with several types of connections are presented and the results are compared with those of standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods.

Survey Study of Optimal Cooling Equipment Capacity of the Large Hospitals in Busan City (부산지역 대형병원 냉방장비의 용량설정 실태조사)

  • Lee, Ji-Weon;Chin, Kyung-Il;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.105-110
    • /
    • 2014
  • The basic factors determining the amount of energy used in hospital buildings are weather conditions and building factors. But the real energy consumer is central plant equipment such as boilers and chillers that produce thermal energy for heating and cooling. Inaccurate decision of the primary equipment's size can cause a high initial-cost, an excessive equipment space, a wasted energy by low operation-efficiency and shortening of the machine's life. In this reason, the decision of optimal size for central plant equipment is very important. There are several factors for the decision such as an operation factor, a factor (equipment factor), piping losses and a simultaneous usage factor applied in the sizing process except a basic cooling load. But there is no standard method for applying those factors. Usually, factors are applied individually by an experience or custom of each engineer. In this study, the authors emphasize the meaning and the problem of those factors, examine them by analyzing factors which were applied to actual practices, and propose the recommendation value of safety, load, operation factors and application methods.

A Study on the Optimal Sizing of Wastewater Recycling System for Office Buildings (사무소건설물(事務所建設物) 중수설비(中水設備)의 적정용량산정(適正容量算定)에 관한 연구(硏究))

  • Jung, Jong-Rim;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.25-32
    • /
    • 2002
  • The demand for water in a city area has enormously increased due to the concentration of population and improvement of the living quality. In this reason, the water shortage and the pollution by city sewage seem to be inevitable. For saving city water and meeting the demands from the city, the wastewater recycling system can be used, which makes used water reusable by a certain purification process. In Korea, the application of a wastewater recycling system to the buildings has continuously been adopted since its first appearance at the Lotte World Complex in 1989. However, the system has not been in fashion because of its high cost and users' negative attitude against recycled water. A research based on literature review and a case study for a recycling water system was carried out and an estimation and evaluation model was proposed. The results from the present study suggest that the optimal size of the recycling water system should be designed within 30-40% of total water demand in a building. Also, it was found that economic benefits could be expected within the payback period of 5.3 years by securing the operation rate over 70%.

Optimal DG Placement in a Smart Distribution Grid Considering Economic Aspects

  • Buaklee, Wirote;Hongesombut, Komsan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1240-1247
    • /
    • 2014
  • The applications of Distributed Generation (DG) in a smart distribution grid environment are widely employed especially for power balancing and supporting demand responses. Using these applications can have both positive and negative impacts on the distribution system. The sizing and location of their installations are the issues that should be taken into consideration to gain the maximum benefit from them when considering the economic aspects. This paper presents an application of the Bat Algorithm (BA) for the optimal sizing and siting of DG in a smart distribution power system in order to maximize the Benefit to Cost Ratio (BCR), subjected to system constraints including real and reactive power generation, line and transformer loading, voltage profile, energy losses, fault level as well as DG operating limits. To demonstrate the effectiveness of the proposed methodology and the impact of considering economic issues on DG placement, a simplify 9-bus radial distribution system of the Provincial Electricity Authority of Thailand (PEA) is selected for the computer simulation to explore the benefit of the optimal DG placement and the performance of the proposed approach.

Stock Efficiency Algorithm for Lot Sizing Problem (로트 크기 문제의 비축 효율성 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.169-175
    • /
    • 2021
  • The lot sizing problem(LSP) is a hard problem that classified as non-deterministic(NP)-complete because of the polynomial-time optimal solution algorithm is unknown yet. The well-known W-W algorithm can be obtain the solution within polynomial-time, but this algorithm is a very complex, therefore the heuristic approximated S-M algorithm is suggested. This paper suggests O(n) linear-time complexity algorithm that can be find not the approximated but optimal solution. This algorithm determines the lot size Xt∗ in period t to the sum of the demands of interval [t,t+k], the period t+k is determined by the holding cost will not exceed setup cost of t+k period. As a result of various experimental data, this algorithm finds the optimal solution about whole data.

A Study on Integrated Production Planning of Distributed Manufacturing Systems on Supply Chain (공급사슬상의 분산 제조 시스템의 통합생산계획에 관한 연구)

  • Koh, Do-Sung;Yang, Yeong-Cheol;Jang, Yang-Ja;Park, Jin-Woo
    • IE interfaces
    • /
    • v.13 no.3
    • /
    • pp.378-387
    • /
    • 2000
  • As the globalization of manufacturing companies continues, the scope of dependence between these companies and distributors, and other suppliers are growing very rapidly since no one company manufactures or distributes the whole product by themselves. And, the need to increase the efficiency of the whole supply chain is increasing. This paper deals with a multi-plant lot-sizing problem(MPLSP) which happens in a decentralized manufacturing system of a supply chain. In this study, we assume that the whole supply chain is driven by a single source of independent demand and many levels of dependent demands among manufacturing systems in the supply chain. We consider setup cost, transportation cost and time, and inventory holding cost as a decision factor in the MPLSP. The MPLSP is decomposed into two sub-problems: a planning problem of the whole supply chain and a lot-sizing problem of each manufacturing system. The supply chain planning problem becomes a pure linear programming problem and a Generalized Goal Decomposition method is used to solve the problem. Its result is used as a goal of the lot-sizing problem. The lot-sizing problem is solved using the CPLEX package, and then the coefficients of the planning problem are updated reflecting the lot-sizing solution. This procedure is repeated until termination criteria are met. The whole solution process is similar to Lagrangian relaxation method in the sense that the solutions are approaching the optimum in a recursive manner. Through experiments, the proposed closed-loop hierarchical planning and traditional hierarchical planning are compared to optimal solution, and it is shown that the proposed method is a very viable alternative for solving production planning problems of decentralized manufacturing systems and in other areas.

  • PDF

Development of a Sizing System and a Draping Pattern for Hip Protector based on 3D Data Analysis of Korean Older Women (한국 노인의 3D 인체특성 분석을 통한 Hip protector 치수체계 수립 및 입체패턴 설계)

  • Jeon, Eun-Jin;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.18 no.1
    • /
    • pp.120-129
    • /
    • 2016
  • This study aimed to develop an optimal sizing system and a draping pattern for hip protector based on an analysis of anthropometric characteristics of Korean older women. A hip protector is a specialized form of pants or underwear containing pads along the outside of each hip. The 3D body scan data of Korean older women were analyzed to identify their anthropometric characteristics and a four-size system with 93% of population accommodation was developed by clustering analysis based on key dimensions derived from factor analysis. The sizing system consists of small/short, large/short, small/tall, and large/tall. A 3D physical model and hip pads were fabricated; then, a hip protector was draped on the 3D model and hip pads. The sizing system of hip protector was analyzed in terms of size and shape and a draping pattern was compared on back center, back side, front side, front center and pad. Lastly, the pattern deformation and clothing pressure were analyzed using the virtual clothing system CLO. Virtual system have disadvantage of not to suggest the objective value. In the future research the wearing comfort and impact absorption of the hip protector needs to be tested and then a hip protector design will be finalized by considering the hip protector's size, material, comfort testing results, aesthetic appeal, protection effectiveness, and practical utility of everyday use.

Development of Standard Sizing System for Taekwondo Uniform (태권도복의 표준치수체계 개발)

  • Yi, Kyong-Hwa;Kim, Hye-Soo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.11
    • /
    • pp.1530-1541
    • /
    • 2007
  • The purpose of this study is to establish a standard sizing system for Taekwondo uniforms. The sample utilized in the study consisted of 5,679 male and female subjects, obtained from Size Korea Project. Twenty three measurements were identified and selected as critical in the design and construction of Taekwondo uniforms. The results were as follows: First, it was determined that all brands used "height" as a key dimension of size designation. Two of brands added "chest girth" or "numeric numbers" to designate size in addition to "height". For example: 1) height/chest girth, 2) height/numeric number. The size pitches of all current Taekwondo uniforms in the market were 10cm of height for all brands. Second, the study showed male measurements were larger and longer than females, establishing that independent sizing specifications by sexes are needed. Third, in case of Taekwondo shirts, height and chest girth were selected as control dimensions. In case of pants, height and waist girth were selected as control dimensions. For selecting optimal sizing pitch, 2 different pitches of chest girth and waist girth(4cm pitch by KS and 8cm pitch by researchers) were compared, while height pitch was fixed at 10cm. Fourth, based on the analysis of the measurements(coverages and coverage efficiency rates), it was determined that 8cm pitches of chest and waist girth were efficient in both upper and lower Taekwondo uniforms. Fifth, subjects distribution counts and percentages were shown after analyzing coverage efficiency rates. Separate results are noted for the upper and lower Taekwondo uniforms. As previously mentioned, height pitches were 10cm and chest and waist pitches were 8cm. Finally, as a result of this research, key and referable measurements relevant to making Taekwondo uniforms were identified for male and female uniform. In case of Taekwondo shirts, 18 sizes were established for men, 16 sizes for women. Twenty five sizes for men and 20 sizes for women were presented in size tables for pants.

Joint Pricing and Lot Sizing Policy under Order-Size-Dependent Delay in Payments

  • Seong Whan Shinn
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.77-86
    • /
    • 2000
  • This paper deals with the problem of determining the retailer's optimal price and order size under the condition of order-size-dependent delay in payments. It is assumed that the length of delay is a function of the retailer's total amount of purchase. The constant price elasticity demand function is adopted which is a decreasing function of retail price. Investigation of the properties of an optimal solution allows us to develop an algorithm whose validity is illustrated through an example problem.

  • PDF