• Title/Summary/Keyword: Optimal shape design

Search Result 1,109, Processing Time 0.026 seconds

Shape Optimization of Cut-Off in Multiblade Fan/Scroll System Using CFD and Neural Network (신경망 기법을 이용한 다익 홴/스크롤 시스템의 컷오프 최적화)

  • Han, S.Y.;Maeng, J.S.;Yoo, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.365-370
    • /
    • 2001
  • In order to minimize unstable flow occurred at a multiblade fan/scroll system, optimal angle and shape of cut-off was determined by using two-dimensional turbulent fluid field analyses and neural network. The results of CFD analyses were used for learning as data of input and output of neural network. After learning neural network optimization process was accomplished for design variables, the angle and the shape of cut-off, in the design domain. As a result of optimization, the optimal angle and shape were obtained as 71 and 0.092 times the outer diameter of impeller, respectively, which are very similar values to previous studies. Finally, it was verified that the fluid field is very stable for optimal angle and shape of cut-off by two-dimensional CFD analysis.

  • PDF

Optimal Shape of a Parallel-Flow Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 평행류 열교환기의 형상 최적화)

  • Oh, Seok-Jin;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.296-303
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to approximately predict its performance with respect to the design parameters over the design domain. The inflow/outflow angle of the working fluid, the location of inlet/outlet, the protruding height of flat tube and the height of header were chosen as a design parameter The evaluation of the relative importance of the design parameters was performed based on a sensitivity analysis. An efficiency index was used as an evaluation characteristics value to simultaneously consider both the heat transfer and the pressure drop. The efficiency index of the optimum model, compared to that of the base model, was increased by 9.3%.

Optimal Shape Design of Excavator Boom Using the Semi-Analytical Method (민감도 근사해석법을 이용한 굴삭기 붐의 최적형상설계)

  • Lim, O-Kaung;Cho, Heon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.301-309
    • /
    • 1995
  • Shape optimal design of an excavator boom to minimize weight can be formulated as a nonlinear programming problem with an automesh refinement carried out by using the finite element method. The design variables are the radii and the coordinates of the circle to describe the excavator boundary shape. In addition to the displacement and stress constraints, geometric constraints are imposed such that the nodes cannot cross the certain range. The optimum design is obtained by using the PLBA nonlinear programming code. The sensitivity derivatives are calculated using the semi-analytical scheme. Numerical results of an excavator boom show potential for weight reduction of 4.4%(65.6 kgf) when considering the displacement, stress and geometric constraints.

Shape Optimal Design of the Door Frame of a Microwave Oven to Minimize Its Twisting Deformation (비틀림 변형 최소화를 위한 전자레인지 도어 프레임의 형상 최적설계)

  • Lee Boo-Youn;Koo Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1016-1023
    • /
    • 2006
  • When one opens the door of a microwave oven during its operation, twisting deformation of the door occurs, which may cause leakage of microwave through the gap between the door and the front plate. A numerical optimization is implemented to minimize the gap by maximizing twisting stiffness of the door of the oven. Design variables are deformed, which describe the shape of the bead in the horizontal and vertical flanges of the door frame. To minimize the twisting deformation, Two optimal design problems to find shapes of the bead in the flange are established. The problems are solved by a numerical optimization technique, their results being evaluated.

The Optimal Preform Design for Automotive Differential Bevel Gear (자동차용 차동 베벨기어의 최적 예비성형체 설계)

  • 김병민;김동환;정구섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. The aspect ratio and chamfer length are considered as design parameters to achieve adequate metal distribution in the finish forging operation. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing the preform shape in metal forming process.

Direct Differentiation Method for Shape Design Sensitivity Analysis of Axisymmetric Elastic Solids by the BEM and Shape Optimization of Turbin Disc (경계요소법에 의한 축대칭 탄성체의 형상설계 민감도해석을 위한 직접미분법과 터빈 디스크의 형상최적설계)

  • Lee, Bu-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1458-1467
    • /
    • 1996
  • A direct differentiationmethod is presented for the shape design sensitivity analysis of axisymmeetric elastic solids. Based on the exisymmetric boundary integralequaiton formulation, a new boundary ntegral equatio for sensitivity analysis is derived by taking meterial derivative to the same integral identity that was used in the adjoint variable melthod. Numerical implementation is performed to show the applicaiton of the theoretical formulation. For a simple example with analytic solution, the sensitivities by present method are compared with analytic sensitivities. As an application to the shape optimization, an optimal shape of a gas turbine disc toinimize the weight under stress constraints is found by incorporating the sensitivity analysis algorithm in an optimizatio program.

Shape optimal design of a dust cover for ball joint of automotive steering system (조향장치용 볼 조인트 더스트 커버의 형상최적설계)

  • Lee, Boo-Youn;Kim, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.603-610
    • /
    • 2013
  • Finite element analysis is performed to evaluate stress and deformation of a wrinkle-type dust cover for the ball joints of tie rods of automotive steering system. Results of the analysis for assembly and operation condition show that sealing capability is good and the maximum stress on the body is smaller than the tensile strength. An optimal shape of the dust cover is obtained using the Taguchi method to reduce the maximum stress. The maximum stress of the optimal design under the operation condition is reduced by 22 per cent of that of the initial design. Results of the research show that performance evaluation and design of the dust covers can be effectively done using the proposed method.

Optimal design of sandwich panel for transmission noise reduction (투과 소음 저감을 위한 샌드위치 패널 최적 설계)

  • Yoon, Hong Geun;Lee, Jin Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.116-118
    • /
    • 2014
  • A shape optimization problem is formulated to optimally design aluminum sandwich panel, which is used for high speed railway vehicle. An aluminum volume used in the panel is selected as a design objective with constraints on the stiffness and the transmission loss value. The formulated shape optimization problem is solved for a well -selected initial shape. The stiffness and transmission loss value of the obtained optimal shape are compared with those of the previously-reported panel.

  • PDF

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.

A Study on the Optimal Shape Design of Front Axle of Wheel Loader using the Design of Experiments (실험계획법을 이용한 휠 로더 전 차축의 최적형상에 관한 연구)

  • Yoo, Dae-Won;Lee, Jai-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.193-200
    • /
    • 2012
  • Wheel loader is one of the construction machinery capable of variety of tasks and the demand on functional diversity and structural reliability is growing. As a study on the optimal shape design of front axle for wheel loader through the design of experiments, this paper assessed the design parameters affecting the maximum stress. As a result, a value of 126.77 MPa of minimum stress was obtained, and optimal factors showed the values of w = 100.0 mm, ${\theta}=40^{\circ}$ and R = 118 mm. It showed an accuracy of 98.7% compared with the structural analysis.