• Title/Summary/Keyword: Optimal production condition

Search Result 649, Processing Time 0.023 seconds

Optimal pH Profile in Rifamycin B Fermentation (리파마이신B 발효생산의 최대화를 위한 pH변화의 최적화)

  • Lee, J.G.;Choi, C.Y.;Seong, B.L.;Han, M.H.
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.225-230
    • /
    • 1981
  • The kinetic study of rifamycin B production in batch culture of Nocardia mediterranei was undertaken in part of our endeavor to optimize the fermentation condition. The growth parameters such as $\mu$$_{m}$ and Ks values for nitrogen source were evaluated by employing Monod equation. From the experiments, $\mu$$_{m}$ and Ks were 0.15hr$^{-1}$ and 8.35g/1, respectively. The growth kinetics in batch culture was found successfully interpreted by logistic law, i.e., the initial specific growth rate and the maximum cell mass concentration were determined as function of pH and both found to have maxima. For the production of rifamycin B, a non-growth associated production kinetics was employed and the specific productivity as a function of pH was found to have two maximum points. The yield coefficient and the specific productivity were calculated as mean values in production phase. Utilizing these experimental data as a function of pH, the optimal condition for the rifamycin B production was discussed with regad to the pH effect on the cell growth and production of the antibiotic. As a result, growth phase at pH 6.5 and production phase at pH 7.0 were found to be recommended.ded.

  • PDF

The Parameter Analysis of Methane Production in Anaerobic Fermenter (혐기소화조에서 메탄 발생에 영향을 미치는 인자 분석)

  • 최광근;신종철;전현희;김상용;이진원
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.473-478
    • /
    • 2003
  • The purpose of this study is to look for the optimal conditions of methane production. The conditions tested for methane production enhancement were temperature, pH, carbon source, nitrogen source, and inhibitor which can affects methane production. As a result, optimal conditions for methane production were 30$^{\circ}C$, neutral pH, methanol as a carbon source, NH$_4$Cl as a nitrogen source. 2-Bromoethanesulfonic acid was used as an inhibitor which can affects methane production. Existence in broth less than 10mM, inhibited methane production. Organic acid measurements revealed that formic acid exists in broth as majority.

Studies on the Penicillinase Produced by a Streptomyces sp. (Part I). Optimal Conditions for the Penicillinase Production by Streptomyces sp. YS-40. (Streptomyces sp.가 생산하는 Penicillinase 에 관한 연구 (제1보) Streptomyces sp. YS-40에 의한 Penicillinase의 생산조건)

  • 도재호;김상달;이동의
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 1982
  • Studies were carried out to investigate the optimal culture conditions for the production of penicillinase using a strain of Streptomyces sp. isolated from soil, YS-40. Among the carbon and nitrogen sources, glucose and L-asparagine increased the peniciilinase production. The addition of M $n^{++}$, $Ca^{++}$ and L $i^{+}$ increased the enzyme production, but depressed by F $e^{+++}$, F $e^{++}$, $Mg^{++}$, Z $n^{++}$, A $g^{++}$, $Ba^{++}$ and S $n^{++}$. L-Leucine slightly increased the enzyme production but L-histidine, L-methionine depressed. Among the vitamins riboflavine, i-inositol, hesperidine, niacin-amide, biotin, folic acid, DL-$\alpha$-lipoic acid increased the enzyme formation. The addition of cephradine, cephalexin, ampicillin, cloxacillin more increased the enzyme formation than that of other$\beta$-lactam antibiotics and antibiotics. Optimal pH and temperature on the enzyme formation was pH 7.0 and 28$^{\circ}C$ respectively Amount of the enzyme production reached at maximum with incubation for 3 days on the optimal condition.

  • PDF

Optimal Condition for Eicosapentaenoic Acid Production and Purification from Psychrophillic Marine Baterium Shewanella sp. L93 (호냉성 해양세균 Shewanella sp. L93로부터 Eicosapentaenoic Acid 생산 및 정제를 위한 최적화 조건)

  • Mo, Sang-Joon;Hong, Hye-Won;Bang, Ji-Heon;Cho, Ki-Woong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.218-223
    • /
    • 2011
  • To obtain eicosapentaenoic acid (EPA)-producing bacteria, some 600 strains of bacteria were isolated from Antarctic sediment and marine organisms during the summer expedition of 1999-2000 and 7 EPA-producing bacteria were obtained through screening with TLC and GC. A strain designated as L93 showed the highest EPA production, which was gram-negative, rod-shaped bacterium. L93 strain was identified as Shewanella sp., from the sequence analysis of 16S rDNA. Optimal conditions temperature and pH for the growth and EPA production were about $4^{\circ}C$ and pH 7. In addition, its production was optimized by 50%(w/v) sea salt. We establish the optimal production system to produce about 320 mg per liter by using this optimal EPA production conditions. EPA-methyl ester was purified from cultured L93 strain to a purity of higher than 97% and typical purification yield is greater than 72% of the input amount via urea complexation and HPLC.

Production of Cathepsin B Inhibitor by Steptomyces luteogriseus KT-10 (Streptomyces luteogriseus KT-10에 의한 Cathepsin B 저해물질의 발효생산)

  • 한길환;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.458-465
    • /
    • 1999
  • Streptomyces luteogriseus KT-10 isolated from Korean farm soil produced a strong cathepsin B inhibitor. Optimal conditions for the cathepsin B inhibitor production by s. luteogriseus KT-10 were evaluated. The cathepsin B inhibitor was produced with maximal yield in the cultural condition of pH 7.0 and $25^{\circ}C$ for 4 days. Optimal medium for the cathepsin B inhibitor production was determined to be a medium containing 20g, peptone 3g, yeast extract 1g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, NaNO3 0.5g, NaCl 0.5g per l. The cathepsin B inhibitor produced by S. luteogriseus KT-10 could also inhibit the other proteinases such as trypsin, papain, and cathepsin D.

  • PDF

Comparison of Liquid and Solid-State Fermentation Processes for the Production of Enzymes and Beta-Glucan from Hulled Barley

  • Lee, Se Yeon;Ra, Chae Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.317-323
    • /
    • 2022
  • Solid-state fermentation using hulled barley was carried out to produce enzymes and β-glucan. The one-factor-at-a-time experiments were carried out to determine the optimal composition of the basal medium. The modified synthetic medium composition in liquid-state fermentation was determined to be 70 g/l hulled barley, 0 g/l rice bran, 5 g/l soytone, and 6 g/l ascorbic acid. Optimal pretreatment conditions of hulled barley by solid-state fermentation were evaluated in terms of maximum production of fungal biomass, amylase, protease, and β-glucan, which were 1.26 mg/g, 31310.34 U/g, 2614.95 U/g, and 14.6% (w/w), respectively, at 60 min of pretreatment condition. Thus, the solid-state fermentation process was found to enhance the overall fermentation yields of hulled barley to produce high amounts of enzymes and β-glucan.

Optimization of Biodiesel Production from Rapeseed Oil Using Response Surface Methodology (반응표면분석법을 이용한 유채유로부터 바이오디젤 생산의 최적화)

  • Jeong, Gwi-Taek;Yang, Hee-Seung;Park, Seok-Hwan;Park, Don-Hee
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.222-227
    • /
    • 2007
  • Biodiesel (fatty acid methyl esters) have used to as substitutes for petro-diesel by mixed-form with petro-diesel. In several processes of biodiesel production, alkali-catalyst transesterification produced to biodiesel of high contents with short reaction time. In this study, we investigate the optimal condition of alkali-catalyst transesterification of rapeseed oil produced at Jeju island in Korea using response surface methodology. The optimal condition of biodiesel production is reaction temperature 59.7$^{\circ}C$, catalyst amount 1.18%, oil to methanol molar ratio 1:8.75, and reaction time 5.18 min. At that reaction condition, the fatty acid methyl ester contents of product are above 97%. Our results may provide useful information with regard to the development of more economic and efficient biodiesel production system.

Optimization of Process Parameters Using a Genetic Algorithm for Process Automation in Aluminum Laser Welding with Filler Wire (용가 와이어를 적용한 알루미늄 레이저 용접에서 공정 자동화를 위한 유전 알고리즘을 이용한 공정변수 최적화)

  • Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.67-73
    • /
    • 2006
  • Laser welding is suitable for welding to the aluminum alloy sheet. In order to apply the aluminum laser welding to production line, parameters should be optimized. In this study, the optimal welding condition was searched through the genetic algorithm in laser welding of AA5182 sheet with AA5356 filler wire. Second-order polynomial regression model to estimate the tensile strength model was developed using the laser power, welding speed and wire feed rate. Fitness function for showing the performance index was defined using the tensile strength, wire feed rate and welding speed which represent the weldability, product cost and productivity, respectively. The genetic algorithm searched the optimal welding condition that the wire feed rate was 2.7 m/min, the laser power was 4 kW and the welding speed was 7.95 m/min. At this welding condition, fitness function value was 137.1 and the estimated tensile strength was 282.2 $N/mm^2$.

Gasification characteristics in an entrained flow coal gasifier (분류층 건식 석탄가스화기에서의 가스화 특성)

  • Yu, Yeong-Don;Yun,Yong-Seung;An, Dal-Hong;Park, Ho-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1690-1700
    • /
    • 1997
  • Entrained coal gasification tests with Datong coal were performed to assess the influence of oxygen/coal ration and pressure. When gasification condition in oxygen/coal ratio has changed from 0.5 to 1.0, optimal gasification condition from low pressure runs was oxygen/coal ratio of approximately 0.9 where CO was produced about 40% and H, about 20%. Under the pressure condition of 12-14 atmospheres, optimal oxygen/coal ratio value was in the region of 0.6 where CO was produced about 55% and H2about 25%. From these results, it was found that the oxygen/ coal ratio for the maximum production of CO and H, was decreasing with the increase in gasifier pressure and also, with increasing oxygen content, carbon conversion was increased. For the Chinese Datong coal, cold gas efficiency was in the range of 40-80%.

A Prediction of Nutrition Water for Strawberry Production using Linear Regression

  • Venkatesan, Saravanakumar;Sathishkumar, VE;Park, Jangwoo;Shin, Changsun;Cho, Yongyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.132-140
    • /
    • 2020
  • It is very important to use appropriate nutrition water for crop growth in hydroponic farming facilities. However, in many cases, the supply of nutrition water is not designed with a precise plan, but is performed in a conventional manner. We proposes a forecasting technique for nutrition water requirements based on a data analysis for optimal strawberry production. To do this, the proposed forecasting technique uses linear regression for correlating strawberry production, soil condition, and environmental parameters with nutrition water demand for the actual two-stage strawberry production soil. Also, it includes predicting the optimal amount of nutrition water requires according to the heterogeneous cultivation environment and variety by comparing the amount of nutrition water needed for the growth and production of different kinds of strawberries. We suggested study uses two types of section beds that are compared to find out the best section bed production of strawberry growth. The dataset includes 233 samples collected from a real strawberry greenhouse, and the four predicted variables consist of the total amounts of nutrition water, average temperature, humidity, and CO2 in the greenhouse.