• Title/Summary/Keyword: Optimal operation

Search Result 2,811, Processing Time 0.026 seconds

Optimal Reactive Power Planning Using Decomposition Method (분할법을 이용한 최적 무효전력 설비계획)

  • 김정부;정동원;김건중;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.8
    • /
    • pp.585-592
    • /
    • 1989
  • This paper presents an efficient algorithm for the reactive planning of transmission network under normal operating conditions. The optimal operation of a power system is a prerequisite to obtain the optimal investment planning. The operation problem is decomposed into a P-optimization module and a Q-optimization module, but both modules use the same objective function of generation cost. In the investment problem, a new variable decomposition technique is adopted which can operate the operation and the investment variables. The optimization problem is solved by using the gradient projection method (GPM).

  • PDF

A PCS Power-sharing Operation Algorithm for Parallel Operation of Polymer Electrolyte Membrane Fuel Cell (PEMFC) Generation Systems (고분자 전해질 연료전지 발전 시스템의 병렬 운전을 위한 PCS 전력 분배 구동 알고리즘)

  • Kang, Hyun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1706-1713
    • /
    • 2009
  • In this paper, a parallel operation algorithm for high power PEMFC generation systems is proposed. According to increasing the capacity of fuel cell systems with several fuel cell stacks, the different dynamic characteristics of each fuel cell stack effect on imbalance of load sharing and current distribution, so that a robust parallel operation algorithm is desired. Therefore, a power-sharing technique is developed and explained in order to design an optimal distributed PEMFC generation system. In addition, an optimal controller design procedure for the proposed parallel operation algorithm is introduced, along with informative simulations and experimental results.

Optimal Reservoir Operation Using Goal Programming for Flood Season (Goal Programming을 이용한 홍수기 저수지 최적 운영)

  • Kim, Hye-Jin;Ahn, Jae-Hwang;Choi, Chang-Won;Yi, Jae-Eung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 2011
  • The purpose of multipurpose reservoir operation in flood season is to reduce the peak flood at a control point by utilizing flood control storage or to minimize flood damage by controlling release and release time. Therefore, the most important thing in reservoir operation for flood season is to determine the optimal release and release time. In this study, goal programming is used for the optimal reservoir operation in flood season. The goal programming minimizes a sum of deviation from the target value using linear programming or nonlinear programming to obtain the optimal alternative for the problem with more than two objectives. To analyze the applicability of goal programming, the historical storm data are utilized. The goal programming is applied to the reservoir system operation as well as single reservoir operation. Chungju reservoir is selected for single reservoir operation and Andong and Imha reservoirs are selected for reservoir system operation. The result of goal programming is compared with that of HEC-5. As a result, it was found that goal programming could maintain the reservoir level within flood control level at the end of a flood season and also maintain flood discharge within a design flood at a control point for each time step. The goal programming operation is different from the real operation in the sense that all inflows are assumed to be given in advance. However, flood at a control point can be reduced by calculating the optimal release and optimal release time using suitable constraints and flood forecasting system.

Optimal Microgrid Operation Considering Combined Heat and Power Generation with Variable Heat and Electric Ratio (가변 열전비를 갖는 열병합 발전설비가 포함된 마이크로그리드의 최적 운용)

  • Lee, Ji-Hye;Park, Je-Se
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1548-1553
    • /
    • 2012
  • The important requirement for microgrid operation is to meet the balance between supply and demand. To meet, Combined Heat and Power (CHP) generation should be considered in microgrid scheduling. CHP generation is economical on the side of a consumer because it products heat and power. Therefore, it is high efficient. This paper presents a mathematical model for optimal microgrid operation including CHP generation using the optimal ratio of heat and power due to demand. The objective function and constraints are modeled by linear program (LP). Through the case study, the validation of the proposed model is shown.

Optimal control of batch distillation (회분식 증류장치의 최적 제어)

  • 이주엽;정상헌;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.941-946
    • /
    • 1992
  • Three different reflux policies are compared for a batch distillation process in which a fixed recovery with a given average purity of the distillate is required ; the first, for the constant distillate purity ; the second, for the constant reflux ratio ; finally, for the optimal reflux policy which gives the minimum operation time. The optimal reflux policy was obtained using pontryagin's maximum principle. Througy the numerical simulations for the three different binary mixtures, it was found that the time advantage of the optimal reflux operation over the constant overhead composition operation varies form 10.0 to 22.4% and the advantage over the constant reflux operation varies from 1106 to 36.6% in the three cases considered.

  • PDF

Optimal Operation Scheduling of Cogeneration Systems Using Fuzzy Linear Programming Method (퍼지선형계획법을 이용한 열병합발전시스템의 최적운전계획수립)

  • Lee, Jong-Beom;Jung, Chang-Ho;Lyu, Seung-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.516-518
    • /
    • 1995
  • This paper presents the optimal short-term operation scheduling by using fuzzy linear programming method on cogeneration systems connected with auxiliary equipments. Simulation is performed in case of the bottomming cycle. Modeling of cogeneration systems and auxiliary equipments is done, the effectiveness of modeling is evaluated through the detailed simulation. After the optimal operation scheduling is established by using linear programming method, the last optimal operation scheduling is established by using fuzzy linear programming method. The results of simulation show the auxiliary equipments can be effeciently operated in case of the bottomming cycle by modeling proposed in this paper.

  • PDF

Optimal Operation for Reverse Supply Chain Incorporating Inspection Policy into Remanufacturing of Used Products

  • Yamaguchi, Shin;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.1-21
    • /
    • 2017
  • This paper discusses a reverse supply chain (RSC) which consists of the process flows from procurement of used products collected from a market, through remanufacturing products from the used products, to sales of the products in a market. In general, it is conceivable for the RSC to face the uncertainty in quality of used products collected from a market. Inspection is one of efficient methods to deal with the problem regarding quality of used products. However, there is a trade-off between inspection cost and inspection accuracy. This paper focuses on the following five types of inspection: (1) 100% inspection, (2) sampling inspection, (3) sampling inspection with screening of rejected lots, (4) sampling inspection with screening of acceptable lots, and (5) no inspection, and determines the optimal operation consisting of the optimal number of procured used products and the optimal inspection policy. Numerical analysis clarifies not only how changes of conditions of the RSC affect the manufacturer's optimal operation but also features of each inspection type. In addition, from the results of numerical analysis, this paper shows the usability to add the proposed inspection in this paper, the sampling inspection with screening of acceptable lots, to choices of inspection type.

Study on Establishing Investment Mathematical Models for Each Application ESS Optimal Capacity in Nationwide Perspective (국가적 관점에서 각 용도별 ESS 적정용량 산정을 위한 투자수리모델 수립에 관한 연구)

  • Kim, Jung-Hoon;Youn, Seok-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.979-986
    • /
    • 2016
  • At present, electric power industry around the world are being gradually changed to a new paradigm, such as electrical energy storage system, the wireless power transmission. Demand for ESS, the core technology of the new paradigm, has been growing worldwide. However, it is essential to estimate the optimal capacity of ESS facilities for frequency regulation because the benefit would be saturated in accordance with the investment moment and the increase of total invested capacity of ESS facilities. Hence, in this paper, the annual optimal mathematical investment model is proposed to estimate the optimal capacity and to establish investment plan of ESS facility for frequency regulation. The optimal mathematical investment model is newly established for each season, because the construction period is short and the operation effect for the load by seasons is different unlike previous the mathematical investment model. Additionally, the marginal operating cost is found by new mathematical operation model considering no-load cost and start-up cost as step functions improving the previous mathematical operation model. ESS optimal capacity is established by use value in use iterative methods. In this case, ESS facilities cost is used in terms of the value of the beginning of the year.

Optimal Operation Control for Energy Saving in Water Reuse Pumping System (에너지절감을 위한 물 재이용 펌프시스템의 최적운전 제어)

  • Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2414-2419
    • /
    • 2012
  • This paper presents an optimal operation control method for energy saving in the water reuse pumping system. A predictive horizon switching strategy is proposed to implement an optimal operation control and a linear programming (LP) algorithm is used to solve optimal problems in each time step. Energy costs are calculated for electricity on both TOU in the light, heavy, and maximum load time period and peak charges. The optimal operation in water reuse pumping systems is determined to reduce the TOU and peak costs. The simulation results show a power energy saving for water reuse pumping systems and power stability improvement.

Development of Han River Multi-Reservoir Operation Rules by Linear Tracking (선형추적에 의한 한강수계 복합 저수지 계통의 이수 조작기준 작성)

  • Yu, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.733-744
    • /
    • 2000
  • Due to the randomness of reservoir inflow and supply demand it is not easy to establish an optimal reservoir operation rule. However, the operation rule can be derived by the implicit stochastic optimization approach using synthetic inflow data with some demand satisfied. In this study the optimal reservoir operation which was reasonably formulated as Linear Tracking model for maximizing the hydro-energy of seven reservoirs system in the Han river was performed by use of the optimal control theory. Here the operation model made to satisfy the 2001st year demand in the capital area inputted the synthetic inflow data generated by multi-site Markov model. Based on the regressions and statistic analyses of the optimal operation results, monthly reservoir operation rules were developed with the seasonal probabilities of the reservoir stages. The comparatively larger dams which would have more controllability such as Hwacheon, Soyanggang, and Chungju had better regressions between the storages and outflows. The effectiveness of the rules was verified by the simulation during actually operating period.period.

  • PDF