• Title/Summary/Keyword: Optimal lamination design

Search Result 16, Processing Time 0.026 seconds

Optimal Lamination Design of Composite Cylinders using an Empirical Ultimate Pressure Load Formula (최종강도 경험식을 이용한 복합재 원통구조의 최적적층 설계)

  • Cho, Yoon Sik;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.316-326
    • /
    • 2019
  • In this paper, a methodology is presented for determining the optimal lamination of composite cylindrical structures subject to hydrostatic pressure. The strength criterion in association with the process of optimal design is the buckling collapse of composite cylinders under hydrostatic pressure loads. An empirical formula expressed in the form of the Merchant-Rankine equation is used to calculate the ultimate strength of filament-wound composite cylinders where genetic algorithm is applied for determining the optimized stacking sequences. It is shown that the optimized lamination provides improved collapse pressure loads. It is concluded that the developed method would be useful for the optimal lamination design of composite cylindrical structures.

Optimal Design of the Stacking Sequence on a Composite Fan Blade Using Lamination Parameter (적층 파라미터를 활용한 복합재 팬 블레이드의 적층 패턴 최적설계)

  • Sung, Yoonju;Jun, Yongun;Park, Jungsun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.411-418
    • /
    • 2020
  • In this paper, approximation and optimization methods are proposed for the structural performance of the composite fan blade. Using these methods, we perform the optimal design of the stacking sequence to maximize stiffnesses without changing the mass and the geometric shape of the composite fan blade. In this study, the lamination parameters are introduced to reduce the design variables and space. From the characteristics of lamination parameters, we generate response surface model having a high fitness value. Considering the requirements of the optimal stacking sequence, the multi-objective optimization problem is formulated. We apply the two-step optimization method that combines gradient-based method and genetic algorithm for efficient search of an optimal solution. Finally, the finite element analysis results of the initial and the optimized model are compared to validate the approximation and optimization methods based on the lamination parameters.

Study on Numerical-analysis Technique for Windpower System Structure under Environmental Loadings (환경하중하의 풍력발전 시스템 구조물의 수치 해석적 기법 연구)

  • Jung, Hae-Young;Hong, Cheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.69-75
    • /
    • 2011
  • The purpose of this study was to develop a buckling analysis technique for a windpower system structure under environmental loadings (hydrostatic pressure) using FEM. We analyzed an isotropic material and composite material and made a comparison using buckling pressure formulas. First, finite element analyses for an isotropic material (SC410) were performed to obtain the variation of buckling pressure for the number of elements and boundary conditions in a pressure-shell model, and the numerical results were compared with those of existing empirical formulas. Then, additional finite element analyses based on the results of the isotropic material (SC410) were performed to determine the optimum lamination angle and pattern for a composite material (URN300). The results of the FE analyses for the composite material were also compared with those of existing empirical formulas. The ply orientations (lamination angles) used in the FE analyses were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and. The lamination patterns in the FE analyses were and. The lamination pattern was assumed to be the equivalent model of. The results of the FE analyses for the isotropic material (SC410) indicated that the optimal values for the number of elements and the boundary conditions were 6000 and both simply supported, respectively. The results of the FE analyses for the composite material (URN300) showed that the optimal ply orientation was $60^{\circ}{\sim}75^{\circ}$.

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin;Pang, Yong-jie;Cheng, Yan-xue;Zhu, Xiao-meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

A Optimal Design method for Dimmable Magnetic Ballast Design for Metal Halide Lamps (메탈핼라이드 램프용 조도제어형 자기식 안정기의 최적 설계 방법)

  • Park, Chong-Yeon;Lee, Hyeon-Jin
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.177-182
    • /
    • 2009
  • The inductor which is used at low frequency as the main part of magnetic ballast consists of an iron core, a bobbin and coil. The conventional inductor design method is not suitable for the magnetic ballast because it has various variables and is not a unique method for the magnetic ballast. Thus, this paper presents the optimal design method for a lamination type inductor using a magnetic ballast for Metal Halide Lamps. Also, the optimal inductor design method is researched for inductors of dimming ballasts and ignitors that have a gate-triggered structure using a SCR thyristor. By the simulation and experimental results, we showed that the proposed design methods is valid.

  • PDF

Optimal Stacking Sequence Design of Laminated Composites under Buckling Loads (좌굴하중하에서 복합적층판의 최적 적층 설계)

  • 윤성진;김관영;황운봉;하성규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.107-121
    • /
    • 1996
  • An optimization procedure is proposed to determine the optimal stacking sequence on the buckling of laminated composite plates with midplane symmetry under various loading conditions. Classical lamination theory is used for the determination of the critical buckling load of simply supported angle-ply laminates. Analysis is performed by the Galerkin method and Rayleigh-Ritz method. The approximate solution of buckling is replaced by the algorithms that produce generalized eigenvalue problem. Direct search technique is employed to solve the optimization problem effectively. A series of computations is carried out for plates having different aspect ratios, different load ratios and different number of lay-ups.

  • PDF

Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing (3D 프린팅 적층 방향을 고려한 위상최적설계의 실험적 검증)

  • Park, Hee-Man;Lee, Gyu-Bin;Kim, Jin-san;Seon, Chae-Rim;Yoon, Minho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • In this study, the anisotropic mechanical property of fused deposition modeling three-dimensional (3D) printing based on lamination direction was verified by a tensile test. Moreover, the property was applied to solid isotropic materials with penalization-based topology optimization. The case of the lower control arm, one of the automotive suspension components, was considered as a benchmark problem. The optimal topological results varied depending on the external load and anisotropic property. Based on these results, two test specimens were fabricated by varying the lamination direction of 3D printing; a tensile test utilizing 3D non-contact strain gauge was also conducted. The measured strain was compared with that obtained by computer-aided engineering response analysis. Quantitatively, the measurement and analysis results are found to have good agreement. The effectiveness of topology optimization considering the lamination direction of 3D printing was confirmed by the experimental result.

Warping thermal deformation constraint for optimization of a blade stiffened composite panel using GA

  • Todoroki, Akira;Ozawa, Takumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.334-340
    • /
    • 2013
  • This paper deals with the optimization of blade stiffened composite panels. The main objective of the research is to make response surfaces for the constraints. The response surface for warping thermal deformation was previously made for a fixed dimension composite structure. In this study, the dimensions of the blade stiffener were treated as design variables. This meant that a new response surface technique was required for the constraints. For the response surfaces, the lamination parameters, linear thermal expansions and dimensions of the structures were used as variables. A genetic algorithm was adopted as an optimizer, and an optimal result, which satisfied two constraints, was obtained. As a result, a new response surface was obtained, for predicting warping thermal deformation.

Optimal Design of Wound core type Transformer by Equivalent Anesotropic Block (권철심변압기의 등가이방성모델을 이용한 최적설계)

  • Im, D.H.;Kwon, B.I.;Park, S.C.;Lee, J.H.;Kim, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.156-158
    • /
    • 1994
  • The analysis of the thin lamination model of the amorphous transformer by FEM requires many region, divisions and much calculating tine, and it has difficulty in calculating for mordern computer. A new method which is simulated by a solid but anisotropic block with the magnetic permeabilities in two orthogonal directions selected to account for the presence of the laminations. [1] Based on this equivalent anisotropic block model, we analyzed the iron loss of the amorphous transformer by FEM, and presented an optimal design example of core dimensions for minimizing the iron loss.

  • PDF

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.