• 제목/요약/키워드: Optimal interpolation

검색결과 155건 처리시간 0.029초

Spline parameterization based nonlinear trajectory optimization along 4D waypoints

  • Ahmed, Kawser;Bousson, Kouamana;Coelho, Milca de Freitas
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.391-407
    • /
    • 2019
  • Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.

Topology optimization with functionally graded multi-material for elastic buckling criteria

  • Minh-Ngoc Nguyen;Dongkyu Lee;Joowon Kang;Soomi Shin
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.33-51
    • /
    • 2023
  • This research presents a multi-material topology optimization for functionally graded material (FGM) and nonFGM with elastic buckling criteria. The elastic buckling based multi-material topology optimization of functionally graded steels (FGSs) uses a Jacobi scheme and a Method of Moving Asymptotes (MMA) as an expansion to revise the design variables shown first. Moreover, mathematical expressions for modified interpolation materials in the buckling framework are also described in detail. A Solid Isotropic Material with Penalization (SIMP) as well as a modified penalizing material model is utilized. Based on this investigation on the buckling constraint with homogenization material properties, this method for determining optimal shape is presented under buckling constraint parameters with non-homogenization material properties. For optimal problems, minimizing structural compliance like as an objective function is related to a given material volume and a buckling load factor. In this study, conflicts between structural stiffness and stability which cause an unfavorable effect on the performance of existing optimization procedures are reduced. A few structural design features illustrate the effectiveness and adjustability of an approach and provide some ideas for further expansions.

PERTURBATION ANALYSIS FOR THE POSITIVE DEFINITE SOLUTION OF THE NONLINEAR MATRIX EQUATION $X-\sum^m_{i=1}A^{\ast}_iX^{\delta_i}A_i=Q$

  • Duan, Xue-Feng;Wang, Qing-Wen;Li, Chun-Mei
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.655-663
    • /
    • 2012
  • Based on the elegant properties of the spectral norm and Thompson metric, we firstly give two perturbation estimates for the positive definite solution of the nonlinear matrix equation $$X-\sum^m_{i=1}A^{\ast}_iX^{\delta_i}A_i=Q(0<|{\delta}_i|<1)$$ which arises in an optimal interpolation problem.

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu Tomonobu;Shirasawa Tomiyuki;Uezato Katsumi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.617-621
    • /
    • 2001
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed a algorithm, that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar insolations and avoids oscillations after reaching the maximum power point.

  • PDF

Performance Analysis, Real Time Simulation and Control of Medium-Scale Commercial Aircraft Turbofan Engine

  • Kong, Chang-Duk;Jayoung Ki;Chung, Suk-Chou
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.776-787
    • /
    • 2001
  • The turbofan engine performance analysis for a medium scale commercial aircraft was carried out and the LQR control scheme for performance optimization was studied. By using scaled component maps from well-known CF6 engine characteristics, the steady-state performance analysis result was compared with BR715-56 engine performance data. The transient performance analysis was performed with four fuel schedules. The linear simulation was done at the maximum take-off condition. The real time linear simulation was performed by interpolation of the system matrices, which used the least square method as the function of LPC rotational speed. By using linear system matrices of design point, the LQR controller which used control variables for the fuel flow and the LPC bleed air was designed.

  • PDF

위상 최적화 기법을 이용한 머플러 설계 (Muffler Design Using a Topology Optimization Method)

  • 이진우;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1085-1089
    • /
    • 2007
  • An acoustic topology optimization method is developed to optimize the acoustic attenuation capability of a muffler. The transmission loss of the muffler is calculated by using the three-point method based on finite element analysis. Each element of the finite element model is assumed to have the variable acoustic properties, which are penalized by a carefully-selected interpolation function to yield clear expansion chamber shapes at the end of topology optimization. The objective of the acoustic topology optimization problem formulated in this work is to maximize the transmission loss at a target frequency. The transmission loss value at a deep frequency of a nominal muffler configuration can be dramatically increased by the proposed optimization method. Optimal muffler configurations are also obtained for other frequencies.

  • PDF

Development of Global Function Approximations of Desgin optimization Using Evolutionary Fuzzy Modeling

  • Kim, Seungjin;Lee, Jongsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1206-1215
    • /
    • 2000
  • This paper introduces the application of evolutionary fuzzy modeling (EFM) in constructing global function approximations to subsequent use in non-gradient based optimizations strategies. The fuzzy logic is employed for express the relationship between input training pattern in form of linguistic fuzzy rules. EFM is used to determine the optimal values of membership function parameters by adapting fuzzy rules available. In the study, genetic algorithms (GA's) treat a set of membership function parameters as design variables and evolve them until the mean square error between defuzzified outputs and actual target values are minimized. We also discuss the enhanced accuracy of function approximations, comparing with traditional response surface methods by using polynomial interpolation and back propagation neural networks in its ability to handle the typical benchmark problems.

  • PDF

Longitudinal Flight Control of a Transport Aircraft Using Thrust Only

  • Ochi, Y.;Kanai, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.148.3-148
    • /
    • 2001
  • This paper deals with a problem of decreasing the airspeed and the altitude of a transport aircraft using thrust only. Such a situation can occur, if the aircraft loses all hydraulic power that drives the control surfaces. A controller for flight path angle control is designed using the model following servo control method, which is a PI-type optimal regulator. For computer simulation, a simulation model that covers a range of flight envelope is made using given linear models and trim points at some flight conditions. Nondimensional aerodynamic coefficients, derivatives and trim points that are not at the given trim points are computed by linear interpolation. The model is effective in simulation where the trim point varies. Simulation using ...

  • PDF

골밀도 측정을 위한 초음파 영상 개선에 관한 연구 (Study on enhancing the ultrasonic image for bone densitometry)

  • 신정식;안중환;김형준;김화영;한승무
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.182-191
    • /
    • 2005
  • It is very important to obtain a high quality of bone image for an accurate ultrasonic measurement of bone mineral density. In this study, we suggested a technique to acquire an optimal image by adapting an acoustic lens and a properly selected ultrasonic probe. Also, we have applied an image processing algorithm with which automatically makes a decision of brightness and contrast of image by generating threshold level, a composition of ultrasonic data, an elimination of noise using modified median filter, and a real time interpolation. We could confirm much improved resolution of bone image with acoustic lens attached to the ultrasonic probe and with the image processing algorithm suggested in this study. Therefore, it became possible to precisely diagnose the osteoprosis using ultrasonic imaging technique.

4관절 3링크 2족 로봇과 걸음새에 관한 연구 (Design of 4 joints 3 Link Biped Robot and Its Gaits)

  • 김성훈;오준호;이기훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.523-528
    • /
    • 2000
  • In this paper, the new type biped walking robot which is composed of the minimum number or links just for walking and its appropriate gaits are proposed. The proposed new gaits for this robot are four-crossing, crawling, standing and turning gait. In designing the biped robot we propose the Performance Index which means the needed torque per a moving distance and generate foot trajectories by $3^{rd}$ order spline Interpolation. Among those, numerically we find the optimal conditions which minimize the Performance Index. Dynamically stable walking of the biped robot is realized by satisfying the stability condition of ZMP(zero moment point), which is related to maintaining the ZMP within the region of the supporting foot during the s1n91e leg support phase. We determine the region of mass center from the stability condition of ZMP and plan references which track the mass conte. trajectory of constant velocity. Finally we implement the gaits statically tracking the planned trajectories using PD control method.

  • PDF