• Title/Summary/Keyword: Optimal design of ship structure

Search Result 51, Processing Time 0.022 seconds

Discrete Optimum Design of Ship Structures by Genetic Algorithm (유전적 알고리즘에 의한 선체 구조물의 이산적 최적설계)

  • Y.S. Yang;G.H. Kim;W.S. Ruy
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.147-156
    • /
    • 1994
  • Though optimization method had been used for long time for the optimal design of ship structure, design variables in the most cases were assumed to be continuous real values or it was not easy to solve the mixed integer optimum design problems using the conventional optimization methods. Thus, it was often tried to use various initial starting points to locate the best optimum paint and to use special method such as branch and bound method to handle the discrete design variables in the optimization problems. Sometimes it had succeed, but the essential problems for dealing with the local optimum and discrete design variables was left unsolved. Hence, in this paper, Genetic Algorithms adopting the biological evolution process is applied to the ship structural design problem where the integer values for the number of stiffen design variables or the discrete values for the plate thickness variables would be more preferable in order to find out their effects on the final optimum design. Through the numerical result comparisons, it was found that Genetic Algorithm could always yield the global optimum for the discrete and mixed integer structural optimization problem cases even though it takes more time than other methods.

  • PDF

Multi-Criteria Topology Design of Truss Structures

  • Yang, Young-Soon;Ruy, Won-Sun
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2001
  • This paper presents a novel design approach that could generate structural design alternatives having different topologies and then, select the optimum structure from them with simulataneously determining its optimum design variables related to geometry and the member size subjected to the multiple objective design environments. For this purpose, a specialized genetic algorithm, called StrGA_DeAl + MOGA, which can handle the design alternatives and multi-criteria problems very effectively, is developed for the optimal structural design. To validate the developed method, method, plain truss design problems are considered as illustrative example. To begin with, some possible topological of the truss structure are suggested based on the stability criterion that should be satisfied under the given loading condition. Then, with the consideration of the given multi-criteria, several different topology forms are selected as design alternatives for the second step of the conceptual design process. Based on the chosen topolgy of truss structures, the sizing or shaping optimization process starts to determine the optimum design parameters. Ten-bar truss problems are given in the paper to confirm the above concept and methodology.

  • PDF

Modeling of Hot-Coil/Cassette Dynamics and Design of Cassette Wedge Angle (핫코일-카세트 동역학 모델링 및 지지경사각 설계)

  • Hong, Sup;Hong, S.W.;Hong, S.Y.;Kim, H.J.;Kim, J.H.;Park, Y.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.70-75
    • /
    • 1997
  • This paper concerns with a safe and efficient transportation method of hot-coils on cargo ship. An automatic loading and unloading system of hot-coils by cassettes, which secure the geometrically unstable cargo, hot-coil, by supporting with wedges on both sides, is considered efficient and profitable. Safety of hot-coil on cassette and subsequently safety of total cargo ship are directly affected by the wedge angle of cassette. For optimal design of the cassette wedge angle, a dynamic model of hot-coil/cassette cargo is developed with constraint of no relative motions between the coil and the cassette. Force equilibrium conditions between resultant alternating inertia forces on hot-coil due to motions of cargo ship in waves and reactions forces from cassette wedge surfaces are derived and consequently a numerical simulation code is implemented. Cassette wedge angle of 37 degree is taken as optimal by considering dynamic stability of hot-coil and strength of cassette structure. Performance of the designed cassette wedge angle is investigated by scaled bench test.

  • PDF

Compressive Ultimate Strength Analysis of Plates with Initial Imperfections (초기결함(初期缺陷)을 갖는 평판(平板)의 압축최종강도해석(壓縮最終强度解析))

  • J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 1985
  • In ship's structure, deck and bottom plate are main strength member subjected to the inplane load due to longitudinal bending, i.e. tensile and/or compressive load. The deck and bottom plate are subdivided into many plate members by stiffeners and girders longitudinally and transversely. Since the plate members are thin, it is likely to be collapsed under compressive load, and when we consider the local strength of deck and bottom, the plate members play an important role in the longitudinal strength. Therefore the precise analysis of their compressive ultimate strength is required for the optimal design of ship's structures. In this paper, the modified analytical method using the incremental form of principle of virtual displacement is introduced to determine the compressive ultimate load of plate members. The results by the present method is satisfactory, and the present method is more effective and economical than the finite element method.

  • PDF

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.

Multi-objective Optimum Structural Design of Marine Structure Considering the Productivity

  • Lee, Joo-Sung;Han, Jeong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • It is necessary to develop an efficient optimization technique to optimize engineering structures that have given design spaces, discrete design values, and several design goals. In this study, an optimum algorithm based on the genetic algorithm was applied to the multi-object problem to obtain an optimum solution that simultaneously minimizes the structural weight and construction cost of panel blocks in ship structures. The cost model was used in this study, which includes the cost of adjusting the weld-induced deformation and applying the deformation control methods, in addition to the cost of the material and the welding cost usually included in the normal cost model. By using the proposed cost model, more realistic optimum design results can be expected.

A new mount with moving-magnet type electromagnetic actuator for naval shipboard equipment

  • Shin, Yun-Ho;Moon, Seok-Jun;Kwon, Jeong-Il;Jung, Woo-Jin;Jeon, Jae-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • This study is proposed a new hybrid mount having a moving-magnet type electromagnetic actuator to reduce the vibration transmitted from naval shipboard equipment to the structure of the ship's hull. Optimal design specifications are determined through experimental analysis. The detailed design of the hybrid mount is determined through several design steps with electromagnetic numerical analysis using Maxwell Software(S/W). The hybrid mount that combines a rubber mount and an electromagnetic actuator has a fail-safe function for shock resistance. The mount is fabricated and tested using a universal testing machine to evaluate the design specifications. Finally, numerical simulation of the hybrid mount is performed to confirm control performance and applicability.

On the Calculation of 3-Dimensional Strength of Oil Tanker by Slope -Deflection Method (기울기-처짐법에 의한 유조선의 입체 강도 해석)

  • S.J.,Yim;J.H.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.3
    • /
    • pp.27-38
    • /
    • 1986
  • In the recent years, the finite element method has been a leading method in calculating the strength of ship hull structural members. But such a calculation has many difficulties in constructing data, reducing CPU-time and connecting it with optimal design. This paper describes more efficient method for three dimensional strength calculation of the hull structure of oil tanker by using the slope-deflection method, and the computer program based on this method is developed. The results of the calculation by using this method are compared with those by using the SAP4 program based on the finite element method. Some advantages are obtained from the application of the slop-deflection method described in this paper in the calculation of the hull structure oil tanker.

  • PDF

Minimum Weight Design of Built-up T Based on HCSR (HCSR 기반 T형 조립부재의 최소중량설계)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.389-394
    • /
    • 2017
  • In a conventional ship structure, stiffeners with an asymmetric section, such as inverted angles, are used widely despite the disadvantage of strength compared to the stiffeners with a symmetric section, such as a built-up T. On the other hand, T-type built-up members are attracting more attention than L-type inverted angles due to the increased size of ships. The purpose of this study was to develop an optimal design program for a built-up T, and apply an evolution strategy as an optimization technique. In the optimization process, the gross thickness concept was adopted for the design variables and objective function, and the constraints are set up based on HCSR (Harmonized Common Structural Rules). Using the developed program in this study, the optimal stiffener design was carried out for 300K VLCC and 158K COT of which the orders were obtained lately. The optimal results revealed the weight reduction effect of 144 tons and 60 tons, respectively.

Concurrent engineering solution for the design of ship and offshore bracket parts and fabrication process

  • Kim, Tae-Won;Lim, Sang-Sub;Seok, Ho-Hyun;Kang, Chung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.376-391
    • /
    • 2013
  • Brackets in ships and offshore structures are added structures that can endure stress concentrations. In this study, a concurrent engineering solution was proposed, and a high strength low carbon cast steel alloy applicable to offshore structures was designed and developed. The yield strength and ultimate tensile strength of the designed steel were 480 and 600 MPa, respectively. The carbon equivalent of the steel was 0.446 with a weld crack susceptibility index of 0.219. The optimal structural design of the brackets for offshore structures was evaluated using ANSYS commercial software. The possibility of replacing an assembly of conventional built-up brackets with a single casting bulb bracket was verified. The casting process was simulated using MAGMAsoft commercial software, and a casting fabrication process was designed. For the proposed bulb bracket, it was possible to reduce the size and weight by approximately 30% and 50%, respectively, compared to the conventional type of bracket.