• Title/Summary/Keyword: Optimal design and operation

Search Result 725, Processing Time 0.026 seconds

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

Hydraulic Analysis of Urban Water-Supply Networks in Marivan

  • Tavosi, Mohammad Ghareb;Siosemarde, Maaroof
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.396-402
    • /
    • 2016
  • In this study, hydraulic analysis of water-supply networks in Marivan was performed by modeling. WATERGEMS was used for modeling and it was calibrated using existing rules and regulations. The purpose of this research is modeling urban water network and its analysis based on hydraulic criteria and meeting pressure conditions at the nodes and complying the economic speed. To achieve this goal, first the pipelines of city streets was designed in AutoCAD on a map of the city. It should be mentioned that it was tried to prevent from creating additional loops in the network and the optimal network was designed by a combination of annular and branch loops. In the next step, the pipes were called in WATERGEMS and then we continue the operation by the allocation of elevation digits to the pipes. Since the topography of this city is very specific and unique, the number of pressure zones was increased. Three zones created only covers about 20% of the population in the city. In this dissertation, the design was performed on the city's main zone with the largest density in the Figures 1,320-1,340. In the next step, the network triangulation was conducted. Finally, the Debiw as allocated based on the triangulation conducted and considering the density of the city for year of horizon. Ultimately, the network of Marivan was designed and calibrated according to hydraulic criteria and pressure zoning. The output of this model can be used in water-supply projects, improvement and reform of the existing net-work in the city, and various other studies. Numerous and various graphs obtained in different parts of a network modelled can be used in the analysis of critical situation, leakage.

Analysis of the axle load of an agricultural tractor during plow tillage and harrowing

  • Hong, Soon-Jung;Park, Seung-Je;Kim, Wan-Soo;Kim, Yong-Joo;Park, Seong-un
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.665-669
    • /
    • 2016
  • Analysis of the load on the tractor during field operations is critical for the optimal design of the tractor. The purpose of this study was to do a load analysis of an agricultural tractor during plowing and harrowing. First, a load measurement system was developed and installed in a 71 kW agricultural tractor. Strain-gauges with a telemetry system were installed in the shaft located between the axles and the wheels, and used to measure the torque of the four driving axles. Second, field experiments were conducted for two types of field operations (plowing, harrowing), each at two gear levels (M2, M3). Third, load analysis was conducted according to field operation and gear level. At M2 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were 13,141 Nm; 4,381 Nm; and 6,971 Nm (${\pm}397.8Nm$, respectively). For harrowing, at M2 gear selection, torque values were, 14,504 Nm; 1,963 Nm; and 6,774 Nm (${\pm}459.4Nm$, respectively). At M3 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were,17,098 Nm; 6,275 Nm; and 8,509 Nm (${\pm}462.4Nm$, respectively). For harrowing at M3 gear selection, maximum, minimum, and average (S. D.) torque values were, 20,266 Nm; 2,745 Nm; and 9,968 Nm (${\pm}493.2$). The working speed of the tractor increased by approximately 143% when shifted from M2 (7.2 km/h) to M3 (10.3 km/h); while during plow tillage and harrowing, the load of the tractor increased approximately 1.2 times and 1.5 times, respectively.

Performance Evaluation and Analysis of the Screw and Die of the Single Screw Extruder Using the CFD (CFD를 이용한 단축압출기 스크류 및 다이스의 성능시험평가 및 해석에 관한 연구)

  • Kim, Jae-Yoel;Chung, Hyo-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.194-200
    • /
    • 2009
  • The extruder type is classified as screw type and non-screw type in terms of the extrusion method. The screw type extruder, which is the most frequently used, is classified as the single screw extruder and the multi-screw extruder. They are classified as vertical type and horizontal type in terms of structure; and those for compounding and for forming in terms of function. The single screw extruder is a universal extruder, most of which is suitable for the extrusion forming of thermoplastic resin. The multi-screw(two-screw, three-screw and four-screw) extruder can increase the extrusion power using the engagement of the screw flank. The single screw extruder does not have a good mixing ratio of the raw material and stable extrusion power, while it has low construction cost and operation cost. In this study, the single screw extruder, which has many weak points compared with the multi-screw extruder, was studied. There have been many studies on the single screw extruder, and they led to its significant development. The existing study method, however, had complex analysis processes and required much time. In this study, the CFD was applied to the performance test and analysis of the extruder, and the optimal design condition of the extrusion power for the screw and die of the single screw extruder was found by comparing the analysis results with the actual performance measurement of the single screw extruder.

Position and Attitude Control System Design of Magnetic Suspension and Balance System for Wind Tunnel Test using Iterative Feedback Tuning and L1 Adaptive Control Scheme (IFT와 L1 적응제어기법을 이용한 풍동실험용 자기부상 비접촉식 밸런스의 제어시스템 설계)

  • Lee, Dong-Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.28-35
    • /
    • 2017
  • Magnetic Suspension and Balance System (MSBS) demonstrates the capacity to levitate an experimental model absent any mechanical contact using magnetic forces and moments. It allows precise control of position and attitude of the model, and measures external forces and moments acting on the model. For the purpose of acquisition of reliable experimental results under stable and safe conditions, the performance and robustness of the position and attitude control system of MSBS needs to be improved. To this end, Iterative Feedback Tuning (IFT) and L1 adaptive output feedback algorithm were employed to automatically increase command following performance and to ensure robust operation of MSBS with failure of electric power supply. The applicability was validated using computational simulation.

Fluid Dynamic Bearing Spindle Motors for DLP (DLP용 유체동압베어링 스핀들모터)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

Establishment of Fatigue Life Evaluation and Management System for District Beating Pipes Considering Operating Temperature Transition Data (운전이력을 고려한 지역난방 열배관의 피로수명 평가 및 관리 체계 구축)

  • Chang Yoon-Suk;Jung Sung-Wook;Kim Hyeong-Keun;Choi Jae-Boong;Kim Sang-Ho;Kim Youn-Hong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1235-1242
    • /
    • 2005
  • A district heating(DH) system supplies environmentally-friend heat and is appropriate for reduction of energy consumption and/or air pollutions. The DH transmission pipe, composed of supply and return pipes, has been used to transmit the heat and prevent heat loss during transportation. The two types of pipes are operated at a temperature of $75\~115^{\circ}C\;and\;40\~65^{\circ}C$, respectively, with an operating pressure of less than 1.568MPa. The objectives of this paper are to systematize data processing of transition temperature and investigate its effects on fatigue life of DH pipes. For the sake of this, about 5 millions temperature data were measured during one year at ten locations, and then available fatigue lift estimation schemes were examined and applied to quantify the specific thermal fatigue life of each pipe. As a result, a relational database management system as well as reliable fatigue lift evaluation procedures is established for Korean DH pipes. Also, since the prototypal evaluation results satisfied both cycle-based and stress-based fatigue criteria, those can be used as useful information in the future fer optimal design, operation and energy saving via setting of efficient condition and stabilization of water temperature.

Study on Optimal Design and Analysis of Worm Gear and Casing of 5 Ton Class Worm Gear Reducer (5톤급 웜기어 감속기의 워엄기어와 케이싱의 최적설계 및 해석에 관한 연구)

  • Cho, Seong Hyun;Jeon, Chang Min;Qin, Zheon;Kim, Dongseon;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.15-21
    • /
    • 2019
  • The worm reducer is capable of quadrature power transmission when the shafts are disposed at right angles to each other. Since a large reduction ratio can be obtained of up to approximately 1/100 and a sliding movement is performed during operation compared with other gears, the noise and vibration are small, and there is the advantage that reverse rotation can be prevented. On the other hand, severe wear and damage are displayed on the gear and worm tooth surface, and many defects, such as intense heat generation of the reducer, occur. In the reducer case, the four-piece casing method was selected to solve the problems of heat generation, transmission efficiency, and assemblability. In this paper, we analyzed the problems of the worm and worm wheel (the core parts of a 5-Ton worm reducer) and casing through these methods and researched how to solve them.

Construction Schemes of GIS-based Integrated Water Environment Information Management System Linked with Korean Reach File (KRF를 연계한 GIS기반의 통합 물환경정보 관리시스템 구축 방안)

  • Lee, Chol Young;Kim, Kye Hyun;Park, Yong Gil;Lee, Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.226-241
    • /
    • 2014
  • This study proposes schemes of GIS-based system development for integrated information management in water environment linked with Korean Reach File (KRF). For this purpose, precedent studies and systems of the U.S. were investigated and analyzed to induce optimal methodology for Korean circumstances. Thereafter, data linkage methods of KRF and Water Environment Information System (WEIS), system configuration plans, application development plans, and KRF improvement and maintenance plans were considered. For data linkage and system configuration, three methods were suggested: an overlay operation-based data linkage method, entering spatial addresses into the existing DB, and creating link information between KRF and the existing DB. The first method was predicted to be the most effective for system implementation, the second method is advantageous for search tasks, and the third method is advantageous for system security and maintenance. Various types of applications should be developed in the consideration of the types of the users and their usages. Moreover, there is a need for further research on regular renewal of KRF, standard development, expansion of construction areas, etc. Based on the present results, research on actual system design and development also should be conducted for supporting Total Maximum Daily Loads (TMDLs).