• Title/Summary/Keyword: Optimal controllers

Search Result 332, Processing Time 0.033 seconds

GA-based Optimal Fuzzy Control of Semi-Active Magneto-Rheological Dampers for Seismic Performance Improvement of Adjacent Structures (인접구조물의 내진성능개선을 위한 준능동 MR감쇠기의 GA-최적퍼지제어)

  • Yun, Jung-Won;Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a GA-based optimal fuzzy control technique for the vibration control of earthquakeexcited adjacent structures interconnected with semi-active magneto-rheological(MR) dampers. Rule-based fuzzy logic controllers are designed first by implementing heuristic knowledge and the genetic algorithm(GA) is then introduced to optimally tune the fuzzy controllers for enhancing the seismic performance of semi-active control system. For practical implementation, the fuzzy controller simply uses locally measured responses of the dampers involved and directly returns the input voltage to the magneto-rheological dampers in real time through the fuzzy inference mechanism. The local measurement based fuzzy controller provides optimal damping force in a decentralized manner so that it does not require a primary central controller unlike the conventional semi-active control techniques. As a result, it can avoid the unbridgeable discrepancy between the desired control force and the actual damper force that may occur in the conventional control approaches. The validity and effectiveness of the proposed control method are shown numerically on two 20-story earthquake-excited buildings interconnected with MR dampers.

$H_{\infty}$ Depth and Course Controllers Design for Autonomous Underwater Vehicles (무인 수중운동체의 $H_{\infty}$ 심도 및 방향 제어기 설계)

  • Yang, Seung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2980-2988
    • /
    • 2000
  • In this paper, H(sub)$\infty$ depth and course controllers of autonomous underwater vehicles using H(sub)$\infty$ servo control are proposed. An H(sub)$\infty$ servo problem is foumulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H(sub)$\infty$servo problem is as follows; firest, this problem is modified as an H(sub)$\infty$ control problem for the generalized plant that includes a reference input mode, and than a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach, The H(sub)$\infty$depth and course controllers are designed to satisfy the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(was force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controlled are evaluated with computer simulations, and finally these simulation results show the usefulness and applicability of the propose H(sub)$\infty$ depth and course control systems.

Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control (H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

Development of a Pneumatic Servomechanism Using a Direct-connected Circuit between Inlet and Outlet and Its Application to the Design of a Fuzzy Position Controller for a Fingering System (흡배기구 직결회로를 이용한 공압 서보장치의 개발과 집게 시스템용 퍼지제어기 설계)

  • Choi, Kap-Yong;Choi, In-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.593-608
    • /
    • 1995
  • In this study two issues are considered, one is to develop a pneumatic servomechanism using a direct-connected circuit between inlet and outlet, the other is to design two kinds of advanced controllers such as fuzzy and PID controllers for a fingering system. Besides, the application of the advanced controllers to the newly proposed servomechanism is presented. The procedure of this study is composed of following 6 steps : [Step 1] Structuring of a control system; [Step 2] Development of a pneumatic circuit for the servomechanism ; [Step 3] Characteristic analysis of the valve and cylinder systems ; [Step 4] Determination of optimal parameters of the PID controller ; [Step 5] Design of a fuzzy controller and parameter tuning; and, [Step 6] Experimental analysis of fuzzy and PID controllers. Experimental results show that the newly proposed pneumatic servomechanism has good performance and, not only the performance of the fuzzy controller is better than that of the PID controller but also the fuzzy controller fits well to the control of the pneumatic servomechanism.

  • PDF

Combined Design of PSS and STATCOM Controllers for Power System Stability Enhancement

  • Rohani, Ahmad;Tirtashi, M. Reza Safari;Noroozian, Reza
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.734-742
    • /
    • 2011
  • In this paper a robust method is presented for the combined design of STATCOM and Power System Stabilizer (PSS) controllers in order to enhance the damping of the low frequency oscillations in power systems. The combined design problems among PSS and STATCOM internal ac and dc voltage controllers has been taken into consideration. The equations that describe the proposed system have been linearized and a Fuzzy Logic Controller (FLC) has been designed for the PSS. Then, the Particle Swarm Optimization technique (PSO) which has a strong ability to find the most optimistic results is employed to search for the optimal STATCOM controller parameters. The proposed controllers are evaluated on a single machine infinite bus power system with the STATCOM installed in the midpoint of the transmission line. The results analysis reveals that the combined design has an excellent capability in damping a power system's low frequency oscillations, and that it greatly enhances the dynamic stability of power systems. Moreover, a system performance analysis under different operating conditions and some performance indices studies show the effectiveness of the combined design.

A Study for the Stabilization of A.C.-D.C. Power Systems Using Optimal Modulation Controllers (최적 변조 제어기를 이용한 교류-직류계통의 안정화에 관한 연구)

  • Wang, Y.P.;Hur, D.R.;Chong, H.H.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.123-126
    • /
    • 1996
  • In this paper, optimal modulation controller is designed to improve the stability of A.C. and A.C.-D.C. power system, and optimal theory is applied to select optimal modulation controller input signal Optimal modulation controller for speed governor and exciter controller system is constructed in A.C. power system, while the controller is constructed to the both control systems like AC. power system, considering ACR-AVR, APR-$A{\gamma}R$ as the control method of direct current system. It is considered that the stability of A.C. power system only and A.C.-D.C. power system against load fluctuations and disturbances under case of optimal modulation control.

  • PDF

Digital Contouring Control of Multi-axial System (다축 시스템의 디지틀 윤곽제어)

  • 이건북;소의열;조원익;최장욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.466-471
    • /
    • 1996
  • This work is concerned with the development of digital contouring controller formulti-axial servosystems. Digital optimal contouring controller is proposed to coordinate each of the controllers of multiple feed drives and specifically improve the controuring performance. The optimal control formulation includes the contour error explicity in the performance index to be minimized. The contouring control is exercised for straight line and circular contours. Substantial improvement in contouring perfomance is obtained for a range of contouring conditions. Both steady state and transient error measures have been considered. The simulation study presented has estiblished the potential of the proposed controller to improve contourning perfomance.

  • PDF

Implementation of the Fuzzy Controller for DC Servo Motor (직류 서보 모터용 퍼지 제어기의 실현에 관한 연구)

  • 이오걸;송호신;이준탁;우정인
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.4
    • /
    • pp.60-68
    • /
    • 1992
  • In this paper, an implementation approach of Fuzzy Position Controller for DC servo motor which requires the faster and more accurate dynamics is presented. Fuzzy position controller implemented with 80286 microprocessor and DT 2801 board consists of an adjustment routine of optimal scale factors and a Fuzzy inference routine of optimal control signals. Comparison to conventional PD controllers, the control performances of proposed Fuzzy controller such as reaching time, overshoot, and disturbance adaptability are substantially improved.

  • PDF

Application Study of Reinforcement Learning Control for Building HVAC System

  • Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.138-146
    • /
    • 2006
  • Recently, a technology based on the proportional integral (PI) control have grown rapidly owing to the needs for the robust capacity of the controllers from industrial building sectors. However, PI controller generally requires tuning of gains for optimal control when the outside weather condition changes. The present study presents the possibility of reinforcement learning (RL) control algorithm with PI controller adapted in the HVAC system. The optimal design criteria of RL controller was proposed in the environment chamber experiment and a theoretical analysis was also conducted using TRNSYS program.

Optimal Control of a First Order System (일차계통의 최적제어에 관한 연구)

  • 송문현;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 1994
  • In this paper, an optimal control of first order systems is discussed. The control system comprises a main controller and an auxiliary controller. The main controller is designed based on the LQ control scheme including an integrator to remove the off-set. The non-linear auxiliary controller is added parallely to the main controller to obtain a finite time settling control. The control parameters under variation of the system and various coefficients of the performance indices are computed numerically, and the control responses for the system with the proposed controllers demonstrated the usefulness of the control method.

  • PDF