• Title/Summary/Keyword: Optimal capacity

Search Result 1,714, Processing Time 0.031 seconds

Characterization of Effective Capacity in Antenna Selection MIMO Systems

  • Lari, Mohammad;Mohammadi, Abbas;Abdipour, Abdolali;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.476-485
    • /
    • 2013
  • In this paper, the effective capacity of a multiple-input multiple-output (MIMO) system in two different cases with receive antenna selection (RAS) and transmit antenna selection (TAS) schemes is investigated. A closed-form solution for the maximum constant arrival rate of this network with statistical delay quality of service (QoS) constraint is extracted in the quasi-static fading channel. This study is conducted in two different cases.When channel state information (CSI) is not available at the MIMO transmitter, implementation of TAS is difficult. Therefore, RAS scheme is employed and one antenna with the maximum instantaneous signal to noise ratio is chosen at the receiver. On the other hand, when CSI is available at the transmitter, TAS scheme is executed. In this case, one antenna is selected at the transmitter. Moreover, an optimal power-control policy is applied to the selected antenna and the effective capacity of the MIMO system is derived. Finally, this optimal power adaptation and the effective capacity are investigated in two asymptotic cases with the loose and strict QoS requirements. In particular, we show that in the TAS scheme with the loose QoS restriction, the effective capacity converges to the ergodic capacity. Then, an exact closed-form solution is obtained for the ergodic capacity of the channel here.

Buckling Enhancement of Column Strips with Piezoelectric Layer

  • Wang, Quan;Wang, Dajun
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • This paper discusses the enhancement of the buckling capacity of column strips by use of piezoelectric layer. The analytical model for obtaining the buckling capacity of the piezoelectric coupled column with general boundary conditions modelled with different types of springs applied at the ends of the column is derived the first time. Based on this proposed model, the buckling capacity of the column strips can be accurately predicted by solving an eigenvalue problem. The computational results show the great potential of the piezoelectric materials in enhancing the buckling capacity of the column strips. The optimal locations of the piezoelectric layer for higher buckling capacity are also obtained for the columns with. standard pinned-pinned, fixed-free, and fixed-pinned structures. In addition, the buckling capacity and the increase of buckling capacity are discussed for those columns with the general boundaries as well. This research may provide a benchmark for the buckling analysis of the piezoelectric coupled strips.

  • PDF

Analysis of Factors Rerated to Absorption Ability of Foliage Plants Exposed to $O_3$ (관엽식물의 오존($O_3$)흡수능에 관여하는 요인 분석)

  • 박소홍;배공영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.537-544
    • /
    • 1998
  • We selected Spathiyhyllum patinii and Pachira aqkatica, since the former has high O3 absorption while the latter low absorption, and analyzed physiological factors such as diffusive coefficient, transpiration rate, photosynthetic rate, and CO2 absorption rate, which affected O3 absorption capacity There was significant relationship between gas absorption capacity and the other factors; photosynthetic rate, diffusive resistance, stomatal resistance and CO2 absorption rate. Therefore model formula for estimation of O3 absorption rate in plant was formulated by making use of these factors. There was difference for the estimation of O3 absorption rate according to plant species. In case of Spathiphyllum patinii, photosynthetic rate is an optimal factor for estimation of O3 absorption capacity. On the other hand, stomatal resistance and diffusive resistance are optimal factors of Pachira aquatica among various physiological ones. And we knew that CO2 absorption rate is a potential factor to evaluate gas absorption capacity regardless of plant species. But considering efficiency and practicality, diffusive resistance was the most effective factor for the estimation of O3 gas absorption.

  • PDF

Mathematical Model for Revenue Management with Overbooking and Costly Price Adjustment for Hotel Industries

  • Masruroh, Nur Aini;Mulyani, Yun Prihantina
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.207-223
    • /
    • 2013
  • Revenue management (RM) has been widely used to model products characterized as perishable. Classical RM model assumed that price is the sole factor in the model. Thus price adjustment becomes a crucial and costly factor in business. In this paper, an optimal pricing model is developed based on minimization of soft customer cost, one kind of price adjustment cost and is solved by Lagrange multiplier method. It is formed by expected discounted revenue/bid price integrating quantity-based RM and pricing-based RM. Quantity-based RM consists of two capacity models, namely, booking limit and overbooking. Booking limit, built by assuming uncertain customer arrival, decides the optimal capacity allocation for two market segments. Overbooking determines the level of accepted order exceeding capacity to anticipate probability of cancellation. Furthermore, pricing-based RM models occupancy/demand rate influenced by internal and competitor price changes. In this paper, a mathematical model based on game theoretic approach is developed for two conditions of deterministic and stochastic demand. Based on the equilibrium point, the best strategy for both hotels can be determined.

Optimal Design of High-Capacity Column-Type Load Cell Using Response Surface Method (반응표면법을 이용한 고하중 기둥형 로드셀의 치적설계)

  • 이태현;이태희;변철웅;박준구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.754-758
    • /
    • 2002
  • According to the enlargement of production facilities and structures, the requirements of high-capacity load cells are increased for monitoring the process conditions in many fields. Generally, however, the accuracy of the column-type high-capacity load cells is not enough due to the geometric nonlinearity. It is supposed to result from the fact that the whole spring element is under high-level stress for the uniform strain field. In this paper, a new shape of spring element is developed which utilizes the stress concentration. As a design criterion, an object function which quantifies the degree of nonlinearity is defined and optimized by use of response surface modeling. As a result, the weight of the spring element is reduced shout 50% in comparison to the conventional shape. The bonding positions of stain gages are found. which show theoretically zero geometrical nonlinearity, while the ratio of overload protection is reduced from 130% to 125% Also it is shown that the response surface method is very efficient in the optimization approach by use of FEM.

  • PDF

A Fast Optimization Algorithm for Optimal Real Power Flow (고속의 유효전력 최적조류계산 알고리즘)

  • Song, Kyung-Bin;Kim, Hong-Rae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.926-928
    • /
    • 1998
  • A fast optimization algorithm has been evolved from a simple two stage optimal power flow(OPF) algorithm for constrained power economic dispatch. In the proposed algorithm, we consider various constraints such as power balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the coupled LP based OPF method to an average gain of 53.13 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity under Delay Quality-of-Service Constraints in Nakagami Fading Environments

  • Zhang, Ping;Xu, Ding;Feng, Zhiyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.632-650
    • /
    • 2013
  • The paper considers a spectrum sharing cognitive radio (CR) network coexisting with a primary network under the average interference power constraint. In particular, the secondary user (SU) is assumed to carry delay-sensitive services and thus shall satisfy a given delay quality-of-service (QoS) constraint. The secondary receiver is also assumed to be equipped with multiple antennas to perform maximal ratio combining (MRC) to enhance SU performance. We investigate the effective capacity of the SU with MRC diversity under aforementioned constraints in Nakagami fading environments. Particularly, we derive the optimal power allocation to achieve the maximum effective capacity of the SU, and further derive the effective capacity in closed-form. In addition, we further obtain the closed-form expressions for the effective capacities under three widely used power and rate adaptive transmission schemes, namely, optimal simultaneous power and rate adaptation (opra), truncated channel inversion with fixed rate (tifr) and channel inversion with fixed rate without truncation (cifr). Numerical results supported by simulations are presented to consolidate our studies. The impacts on the effective capacity of various system parameters such as the number of antennas, the average interference power constraint and the delay QoS constraint are investigated in detail. It is shown that MRC diversity can significantly improve the effective capacity of the SU especially for cifr transmission scheme.

A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing (스파이럴 그루브 형상의 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구)

  • 강지훈;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.257-262
    • /
    • 2001
  • A numerical analysis is undertaken to show tile influence of bearing design parameters on tile load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, arid the seal ratio.

  • PDF

Optimal Routing of Distribution Network Considering Reliability Indices (신뢰도 지수를 고려한 배전계통의 최적 전력전송경로 결정)

  • 신동환;노병권;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1073-1080
    • /
    • 1999
  • Optimal routing of distribution networks can be attained by keeping the line power capacity limit to handle load requirements, acceptable voltage at customer loads, and the reliability indices such as SAIFI, SAIDI, CAIDI, and ASAI limits. This method is composed of optimal loss reduction and optimal reliability cost reduction. The former is solved relating to the conductor resistance of all alternative routes, and the latter is solved relating to the failure rate and duration of each alternative route. The routing considering optimal loss only and both optimal loss and optimal reliability cost are compared in this paper. The case studies with 10 and 24 bus distribution networks showed that reliability cost should be considered as well as loss reduction to achieve the optimal routing in the distribution networks.

  • PDF

Optimal Routing of Distribution Networks Considering Reliability Indices (신뢰도지수를 고려한 배전계통시스템의 최적전력전송경로 결정)

  • Roh, P.K.;Kim, J.O.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.915-917
    • /
    • 1998
  • Optimal routing of distribution networks can be attained by keeping the line power capacity limit to handle load requirements, acceptable voltage at customer loads, and the reliability indices such as SAIFI, SAIDI, CAIDI, and ASAI limits. This method is composed of optimal loss reduction and optimal reliability cost reduction. The former is solved relating to the conductor resistance of all alternative routes, and the latter is solved relating to the failure rate and duration of each alternative route. The routing considering optimal loss only and both optimal loss and optimal reliability cost are compared in this paper. The results showed that reliability cost should be considered as well as loss reduction to achieve the optimal routing in the distribution networks.

  • PDF