• Title/Summary/Keyword: Optimal Valve Capacity Coefficient

Search Result 4, Processing Time 0.016 seconds

Design of Optimal Capacity Coefficients of Flow Control Valves in the Hoist Hydraulic System Using the Complex Method (콤플렉스법에 의한 호이스트 유압회로 유량제어밸브의 최적유량계수 설계)

  • Lee, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, two pilot operated check valves, two flow control valves. The capacity coefficients of flow control valves should be adjusted for the hoist to operate at moderate speed and minimize the hydraulic energy loss. However, it is difficult to adjust the four capacity coefficients of flow control valves by trial and error for optimal operation. The steady state model of the hoist hydraulic system is derived and the optimal capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

A Study on Reduction of Cavitation with Orifice on High Differential Pressure Control Butterfly Valve (오리피스를 이용한 고차압 제어 버터플라이 밸브의 캐비테이션 저감에 관한 연구)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.131-139
    • /
    • 2022
  • The exchange of goods over the sea is a situation in which the amount of trade between countries is gradually increasing. In order to maintain the optimal operating condition, the ship maintains stability and optimal operating conditions by inserting or withdrawing ballast water from the ballast tank according to the loading condition of cargo capacity is also increasing. Control valves play an important role in controlling fluid flow in these pipes. When the flow rate is controlled using a control valve, problems such as cavitation, flashing, and suffocating flow may occur due to high differential pressure, and in particular, damage to valves and pipes due to cavitation is a major problem. Therefore, in this study, the cavitation phenomenon is reduced by installing orifices at the front and rear ends of the high differential pressure control butterfly valve to reduce the sudden pressure drop at the limiting part of the butterfly valve step by step. The flow coefficient according to the shape of the orifice, the degree of cavitation occurrence, and the correlation were analyzed using a CFD(Cumputational Fluid Dynamics), and an optimal orifice design for reducing cavitation is derived.

An Experimental Study on the Effects of EFV of LPG Engine on Automobiles Acceration Performance (LPG기관의 과류밸브가 가속성능에 미치는 영향에 관한 실험적 연구)

  • Jang Tae-Ik;Kim Chang-Hun;Kim Chul-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1072-1081
    • /
    • 2004
  • This paper is to investigate on the effects of the hole size of spring type EFV(excessive flow valve) for automobiles The analytical and experimental methods were employed to measure the discharge coefficient. choked flowrate and Pressure wave in a bombe, line and vaporizor The size of EFV was determined to meet the legally permitted limits with the capacity of engine displacement up to 2000cc, according to the obtained discharge coefficient. The Purpose of this paper is 1) to find causes of bad acceration performance in LPG engines 2) to find optimal design determination of spring coefficient and orifice hole size of excessive flow valve in LPG engine 3) to find pressure wave of bombe, line and vaporizer through expeimental verification. Experimental results indicated that increase of orifice size 0.5mm to 1mm be caused to increase discharge coefficient, and choked flow rate and decrease operation range of difference pressure wave.

Studies on Performance of CO2 Water Heater by Numerical Modeling (수치적 모델링을 통한 이산화탄소 급탕기의 특성 연구)

  • Park, Han Vit;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Numerical modeling of $CO_2$ water heater was conducted prior to optimal design of medium and large sized $CO_2$ water heater, and the experimental test with small sized $CO_2$ water heater having heat capacity of 4 kW was completed to verify the present numerical model. The present model estimated the experimental data of COP(coefficient of performance), heating capacity, and the hot water outlet temperature within the range of 3% to 8% of mean deviation. As increase of EEV(electric expansion valve) opening area, decreasing of heating capacity and the hot water outlet temperature, and increasing of COP were found in both experimental and numerical investigation.