• Title/Summary/Keyword: Optimal Technique

Search Result 3,174, Processing Time 0.031 seconds

Stability Analysis of the Optimal Semi-Trailer Vehicles

  • Mongkolwongrojn, M.;Campanyim, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.248-251
    • /
    • 2004
  • Stability of truck and trailer are the most significance in Thai automotive industry. This paper presents the mathematical model of a six-degree-of-freedom semi-trailer vehicle. Search method was implemented to obtain the optimum design variables of the trailer which are the distance from the fifth wheel to the centroid of the trailer and the distance from the centroid of the trailer to the trailer axel. The objective function is to minimize the steady side slip velocity, steady-state yawing velocity and steady-state angle between the tractor and the trailer. From the calculation , the optimum distance from the fifth wheel to the centroid of the trailer and the optimum distance from the centroid of the trailer to the trailer axle are 5.50 and 3.25 meters respectively. The stability of the optimal semi-trailer vehicle was also examined in steady state. The steady side slip velocity, yawing velocity and the angle between tractor and trailer are also obtained using linearization technique under unit step disturbance of the tractor front wheel steering angle.

  • PDF

Robust Tracking Control of a Ball and Beam System using Optimal Bang-Bang Input (최적의 Bang-Bang 입력을 이용한 볼-빔 시스템의 강인한 추적 제어)

  • Lee, Kyung-Tae;Choi, Ho-Lim
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.110-120
    • /
    • 2018
  • In this paper, we apply the input-output linearization technique to tracking the follow-up trajectory r(t) in the ball-beam system. There exist system disturbance and various uncertainties, the conventional input-output linearization based control yields some noticeable errors in tracking performance. As a result, a new robust control technique for the uncertainty of the system was proposed and its improved performance verified through simulation and experimental results. So, more realistic system model is obtained with unmatched uncertainties and disturbance. Then, in order to improve the control performance, a new optimal bang-bang control input is additionally added.

A Systematic Generation of Register-Reuse Chains (레지스터 재활용 사슬의 체계적 생성)

  • Lee, Hyuk-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1564-1574
    • /
    • 1999
  • In order to improve the efficiency of optimizing compilers, integration of register allocation and instruction scheduling has been extensively studied. One of the promising integration techniques is register allocation based on register-reuse chains. However, the generation of register-reuse chains in the previous approach was not completely systematic and consequently it creates unnecessarily dependencies that restrict instruction scheduling. This paper proposes a new register allocation technique based on a systematic generation of register-reuse chains. The first phase of the proposed technique is to generate register-reuse chains that are optimal in the sense that no additional dependencies are created. Thus, register allocation can be done without restricting instruction scheduling. For the case when the optimal register-reuse chains require more than available registers, the second phase reduces the number of required registers by merging the register-reuse chains. Chain merging always generates additional dependencies and consequently enforces the execution order of instructions. A heuristic is developed for the second phase in order to reduce additional dependencies created by merging chains. For matrix multiplication program, the number of registers resulting from the first phase is small enough to fit into available registers for most basic blocks. In addition, it is shown that the restriction to instruction scheduling is reduced by the proposed merging heuristic of the second phase.

  • PDF

Shape Optimization of LMR Fuel Assembly Using Radial Basis Neural Network Technique (신경회로망 기법을 사용한 액체금속원자로 봉다발의 형상최적화)

  • Raza, Wasim;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.663-671
    • /
    • 2007
  • In this work, shape optimization of a wire-wrapped fuel assembly in a liquid metal reactor has been carried out by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. Sequential Quadratic Programming is used to search the optimal point from the constructed surrogate. Two geometric design variables are selected for the optimization and design space is sampled using Latin Hypercube Sampling. The optimization problem has been defined as a maximization of the objective function, which is as a linear combination of heat transfer and friction loss related terms with a weighing factor. The objective function value is more sensitive to the ratio of the wire spacer diameter to the fuel rod diameter than to the ratio of the wire wrap pitch to the fuel rod diameter. The optimal values of the design variables are obtained by varying the weighting factor.

Motion analysis within non-rigid body objects in satellite images using least squares matching

  • Hasanlou M.;Saradjian M.R.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.47-51
    • /
    • 2005
  • Using satellite images, an optimal solution to water motion has been presented in this study. Since temperature patterns are suitable tracers in water motion, Sea Surface Temperature (SST) images of Caspian Sea taken by MODIS sensor on board Terra satellite have been used in this study. Two daily SST images with 24 hours time interval are used as input data. Computation of templates correspondence between pairs of images is crucial within motion algorithms using non-rigid body objects. Image matching methods have been applied to estimate water body motion within the two SST images. The least squares matching technique, as a flexible technique for most data matching problems, offers an optimal spatial solution for the motion estimation. The algorithm allows for simultaneous local radiometric correction and local geometrical image orientation estimation. Actually, the correspondence between the two image templates is modeled both geometrically and radiometrically. Geometric component of the model includes six geometric transformation parameters and radiometric component of the model includes two radiometric transformation parameters. Using the algorithm, the parameters are automatically corrected, optimized and assessed iteratively by the least squares algorithm. The method used in this study, has presented more efficient and robust solution compared to the traditional motion estimation schemes.

  • PDF

Available Transfer Capability Evaluation Considering CO2 Emissions Using Multi-Objective Particle Swarm Optimization (CO2 배출량을 고려한 가용송전용량 계산에 관한 연구)

  • Chyun, Yi-Kyung;Kim, Mun-Kyeom;Lyu, Jae-Kun;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1017-1024
    • /
    • 2010
  • Under the Kyoto Protocol many countries have been requested to participate in emissions trading with the assigned $CO_2$ emissions. In this environment, it is inevitable to change the system and market operation in deregulated power systems, and then ensuring safety margin is becoming more important for balancing system security, economy and $CO_2$ emissions. Nowadays, available transfer capability (ATC) is a key index of the remaining capability of a transmission system for future transactions. This paper presents a novel approach to the ATC evaluation with $CO_2$ emissions using multi-objective particle swarm optimization (MOPSO) technique. This technique evolves a multi-objective version of PSO by proposing redefinition of global best and local best individuals in multi-objective optimization domain. The optimal power flow (OPF) method using MOPSO is suggested to solve multi-objective functions including fuel cost and $CO_2$ emissions simultaneously. To show its efficiency and effectiveness, the results of the proposed method is comprehensively realized by a comparison with the ATC which is not including $CO_2$ emissions for the IEEE 30-bus system, and is found to be quite promising.

Comparative Studies of Frequency Estimation Method for Fault Disturbance Recorder (고장 왜란 기록기를 위한 주파수 추정 기법의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • Voltage and current phasor estimation has been executed by GPS-based synchronized PMU, which has become an important way of wide-area blackout protection for the prevention of expending faults in a power system. The PMU technique can not easily get the field data and it is impossible to share information, so that there has been used a FNET(Frequency Monitoring Network) method for the wide-area intelligent protection in USA. It consists of FDR(Fault Disturbance Recorder) and IMS(Information Management System). Therefore, FDR must provide an optimal frequency estimation method that is robust to noise and failure. In this paper, we present comparative studies for the frequency estimation method using IRDWT(Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and DFT(Discrete Fourier Transform). The Republic of Korea345[kV] power system modeling data by EMTP-RV are used to evaluate the performance of the proposed two kinds of RDWT(Recursive Discrete Wavelet Transform) and DFT. The simulation results show that the proposed frequency estimation technique using FRDWT could be the optimal frequency measurement method, and thus be applied to FDR.

Upper-Stage Launch Vehicle Servo Controller Design Considering Optimal Thruster Configuration (상단 발사체 추력기 최적 배치 연구)

  • Hwang,Tae-Won;Tak,Min-Je;Bang,Hyo-Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.55-63
    • /
    • 2003
  • An attitude control system using reaction thrusters for the upper stage of a launch vehicle is considered. The thruster configuration (position and direction) determines control system response, fuel consumption, effective torque and system fault tolerance. We propose a procedure for finding the optimal thruster configuration with desired control effectiveness over the range of selected torque commands. An optimization technique called Particle Swarm Optimization is used for the numerical experiments. The validity of the solution is checked through computer simulations.

Integrated Corporate Bankruptcy Prediction Model Using Genetic Algorithms (유전자 알고리즘 기반의 기업부실예측 통합모형)

  • Ok, Joong-Kyung;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.99-121
    • /
    • 2009
  • Recently, there have been many studies that predict corporate bankruptcy using data mining techniques. Although various data mining techniques have been investigated, some researchers have tried to combine the results of each data mining technique in order to improve classification performance. In this study, we classify 4 types of data mining techniques via their characteristics and select representative techniques of each type then combine them using a genetic algorithm. The genetic algorithm may find optimal or near-optimal solution because it is a global optimization technique. This study compares the results of single models, typical combination models, and the proposed integration model using the genetic algorithm.

  • PDF

Experiments on the Grinding Conditions for Helical Scan Grinding of a Glass Material (유리 재료의 헬리컬 스캔 연삭 조건 실험)

  • Lee, Dae-Uk;O, Chang-Jin;Lee, Eung-Seok;Kim, Ok-Hyeon;Kim, Seong-Cheong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.165-170
    • /
    • 2001
  • In normal grinding abrasive particles of a grinding wheel rotate on planes parallel to the direction of workpiece fred. which may induce continued scratch lines on ground surface as the workpiece feeds. Instead in helical scan grinding the planes make an angle, called a helical angle, with the feeding direction. Thus scratch lines produced by abrasive particles per one revolution are discontinued which implies that the generation of scratch lines are suppressed by the helical scan grinding. In this study some experimental works have been done on the helical scan grinding of glass to find the effects of grinding conditions on the surface roughness and estimate the optimal grinding conditions. The helical angle, fred rate, material removal rate and the wheel speed are taken as factors for three kinds of grinding wheels i.e., coarse(#140 mesh), medium(#400) and fine(#800) diamond wheels. The experiments are scheduled by Taguchi technique and ANOVA has been carried out for the interpretation of the results. As a result of this study effects of the factors are verified quantitatively showing that the major factors are changed according to the wheel's mesh size and the helical angle is one of the influencing factors on the surface quality.

  • PDF