• Title/Summary/Keyword: Optimal Technique

Search Result 3,174, Processing Time 0.029 seconds

Optimal Coordination of Overcurrent Relays in the Presence of Distributed Generation Using an Adaptive Method

  • Mohammadi, Reza;Farrokhifar, Meysam;Abyaneh, Hossein Askarian;Khoob, Ehsan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1590-1599
    • /
    • 2016
  • The installation of distributed generation (DG) in the electrical networks has numerous advantages. However, connecting and disconnecting of DGs (CADD) leads to some problems in coordination of protection devices due to the changes in the short circuit levels in the different points of network. In this paper, an adaptive method is proposed based on available setting groups (SG) of relays. Since the number of available SG is less than possible CADD states, a classifying index (CI) is defined to categorize the several states in restricted setting groups. Genetic algorithm (GA) with a suitable objective function (OF) is used as an optimization method for the classification. After grouping, a modified coordination method is applied to achieve optimal coordination for each group. The efficiency of the proposed technique is demonstrated by simulation results.

Optimal Scheduling for Dynamic Ice Storage System with Perfectly Predicted Cooling Loads (동적제빙형 빙축열시스템에 대한 최적운전계획)

  • Lee, Kyoung-Ho;Lee, Sang-Ryoul;Choi, Byoung-Youn;Kwon, Seong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.286-291
    • /
    • 2001
  • This paper describes an optimal scheduling for ice slurry systems for energy cost saving. The optimization technique applied in the study is the dynamic programming method, for which the state variable is the storage in the ice storage tank and the control variable is the state of chiller's on-off switching. Though the costs during charge period is included in optimization by taking the average cost of ice per hour for slurry making, the time horizon for the simulation is limited building cooling period because accurate charge rate from the ice maker into the ice storage tank cannot be estimated during the charge period. In the operating simulation after optimizing procedure, energy consumption and operating cost for the optimal control are calculated and compared with them for a conventional control with one case of cooling load profile.

  • PDF

A study on the optimal value for the towers height of the ropeway (가공색도의 지주높이 최적치에 관한 연구)

  • 최선호;박용수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.381-388
    • /
    • 1988
  • The heights of the towers of a ropeway are theoretically derived and the result is experimentally verified. The accuracy in the equation of deflection angle obtained by applying the characteristics of catenary curve was confirmed through experiment. By applying these equations the optimal values of the tower heights could be obtained because the deflection angles trade off each other. The deflection angle was measured by using the curve fitting technique.

Estimation of Rebate Level for Energy Efficiency Programs Using Optimization Technique (최적화 기법을 이용한 에너지 효율 프로그램의 지원금 수준 산정)

  • Park, Jong-Jin;So, Chol-Ho;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.369-374
    • /
    • 2008
  • This paper presents the evaluation procedures and the estimation method for the estimation of optimal rebate level for EE(Energy Efficiency) programs. The penetration amount of each appliance is estimated by applying price function to preferred diffusion model resulted from model compatibility test. To estimate the optimal rebate level, two objective functions which express the maximum energy saving and operation benefit are introduced and by multi-objective function which can simultaneously consider two objective functions the optimal rebate level of each appliance is estimated. And then, using the decided rebate level and each penetration amount, the priority order for reasonable investment of each high-efficiency appliance is estimated compared to the results of conventional method. Finally, using a benefit/cost analysis based on California standard practice manual, the economic analysis is implemented for the four perspectives such as participant, ratepayer impact measure, program administrator cost and total resource cost.

OPTIMAL DESIGN AND FABRICATION OF SPIRAL INDUCTOR ON SILICON SUBSTRATE (실리콘 기판상에서 나선형 인덕터의 최적설계 및 제작)

  • 서종삼;박종욱이성희김영석
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.645-648
    • /
    • 1998
  • We used a three-dimensional inductance extraction program, Fasthenry for optimal design of the spiral inductors on silicon substrate. The inductance and quality factor of the spiral inductors with various design parameters were calculated so that the optimal parameter value was determined. The spiral inductors then were fabricated using different foundary processes and were measured using the network analyzer and microwave probes. The pad and other parasitics of measurement system were de-embedded using the y-parameter calibration technique. the inductors fabricated using the LG 0.8um process and HP 0.5um process showed the quality factor of 5.8 and 3, respectively. Finally the equivalent circuit farameters of the spiral inductors on silicon substrate were extracted from the measurement data using the matlab.

  • PDF

Optimal Environmental and Economic Operation using Evolutionary Computation and Neural Networks (진화연산과 신경망이론을 이용한 전력계통의 최적환경 및 경제운용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;You, Seok-Ku
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1498-1506
    • /
    • 1999
  • In this paper, a hybridization of Evolutionary Strategy (ES) and a Two-Phase Neural Network(TPNN) is applied to the optimal environmental and economic operation. As the evolutionary computation, ES is to search for the global optimum based on natural selection and genetics but it shows a defect of reducing the convergence rate in the latter part of search, and often does not search the exact solution. Also, neural network theory as a local search technique can be used to search a more exact solution. But it also has the defect that a solution frequently sticks to the local region. So, new algorithm is presented as hybrid methods by combining merits of two methods. The hybrid algorithm has been tested on Emission Constrained Economic Dispatch (ECED) problem and Weighted Emission Economic Dispatch (WEED) problem for optimal environmental and economic operation. The result indicated that the hybrid approach can outperform the other computational efficiency and accuracy.

  • PDF

Study on the optimal design for Planetary Gear Train using simulated annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구)

  • 최용혁;정태형;이근호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF

Optimal Design of a Smart Actuator by using of GA for the Control of a Flexible Structure Experiencing White Noise Disturbance

  • Han, Jungyoup;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.125-129
    • /
    • 1996
  • This paper deals with the problem of placement/sizing of distributed piezo actuators to achieve the control objective of vibration suppression. Using the mean square response as a performance index in optimization, we obtain optimal placement and sizing of the actuator. The use of genetic algorithms as a technique for solving optimization problems of placement and sizing is explored. Genetic algorithms are also used for the control strategy. The analysis of the system and response moment equations are carried out by using the Fokker-Planck equation. This paper presents the design and analysis of an active controller and optimal placement/sizing of distributed piezo actuators based on genetic algorithms for a flexible structure under random disturbance, shows numerical example and the result.

  • PDF

Optimal Design of Dimension of Extrusion Die with Single Stress Ring (단순보강링을 갖는 압출 금형의 치수 최적설계)

  • 안성찬;임용택
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.363-370
    • /
    • 2002
  • In this study, an optimal design technique was investigated for determining appropriate dimensions of components of the die set used in the extrusion process. For this, an axi-symmetric elastic finite element program for the analysis of deformation of the shrink fitted die set was developed with the Lagrange multiplier method to implement the constraint condition of shrink fit of stress ring. By coupling the rigid-viscoplastic analysis of extrusion process by CAMPform and elastic analysis of the die set, the optimization study was made by employing optimization program DOT. Considering the various assembly conditions, optimal design was determined for a single stress ring case. It is construed that the proposed design method can be beneficial for improving the tool life of cold extrusion die set at practice.

Optimal Design of Dynamic System Using a Genetic Algorithm(GA) (유전자 알고리듬을 이용한 동역학적 구조물의 최적설계)

  • Hwang, Sang-Moon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.116-124
    • /
    • 1999
  • In most conventional design optimization of dynamic system, design sensitivities are utilized. However, design sensitivities based optimization method has numbers of drawback. First, computing design sensitivities for dynamic system is mathematically difficult, and almost impossible for many complex problems as well. Second, local optimum is obtained. On the other hand, Genetic Algorithm is the search technique based on the performance of system, not on the design sensitivities. It is the search algorithm based on the mechanics of natural selection and natural genetics. GA search, differing from conventional search techniques, starts with an initial set of random solutions called a population. Each individual in the population is called a chromosome, representing a solution to the problem at hand. The chromosomes evolve through successive iterations, called generations. As the generation is repeated, the fitness values of chromosomes were maximized, and design parameters converge to the optimal. In this study, Genetic Algorithm is applied to the actual dynamic optimization problems, to determine the optimal design parameters of the dynamic system.

  • PDF