• Title/Summary/Keyword: Optimal Solution algorithm

Search Result 1,318, Processing Time 0.032 seconds

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Unlicensed Band Traffic and Fairness Maximization Approach Based on Rate-Splitting Multiple Access (전송률 분할 다중 접속 기술을 활용한 비면허 대역의 트래픽과 공정성 최대화 기법)

  • Jeon Zang Woo;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.10
    • /
    • pp.299-308
    • /
    • 2023
  • As the spectrum shortage problem has accelerated by the emergence of various services, New Radio-Unlicensed (NR-U) has appeared, allowing users who communicated in licensed bands to communicate in unlicensed bands. However, NR-U network users reduce the performance of Wi-Fi network users who communicate in the same unlicensed band. In this paper, we aim to simultaneously maximize the fairness and throughput of the unlicensed band, where the NR-U network users and the WiFi network users coexist. First, we propose an optimal power allocation scheme based on Monte Carlo Policy Gradient of reinforcement learning to maximize the sum of rates of NR-U networks utilizing rate-splitting multiple access in unlicensed bands. Then, we propose a channel occupancy time division algorithm based on sequential Raiffa bargaining solution of game theory that can simultaneously maximize system throughput and fairness for the coexistence of NR-U and WiFi networks in the same unlicensed band. Simulation results show that the rate splitting multiple access shows better performance than the conventional multiple access technology by comparing the sum-rate when the result value is finally converged under the same transmission power. In addition, we compare the data transfer amount and fairness of NR-U network users, WiFi network users, and total system, and prove that the channel occupancy time division algorithm based on sequential Raiffa bargaining solution of this paper satisfies throughput and fairness at the same time than other algorithms.

Comparative Analysis for Clustering Based Optimal Vehicle Routes Planning (클러스터링 기반의 최적 차량 운행 계획 수립을 위한 비교연구)

  • Kim, Jae-Won;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.155-180
    • /
    • 2020
  • It takes the most important role the problem of assigining vehicles and desigining optimal routes for each vehicle in order to enhance the logistics service level. While solving the problem, various cost factors such as number of vehicles, the capacity of vehicles, total travelling distance, should be considered at the same time. Although most of logistics service providers introduced the Transportation Management System (TMS), the system has the limitation which can not consider the practical constraints. In order to make the solution of TMS applicable, it is required experts revised the solution of TMS based on their own experience and intuition. In this research, different from previous research which have focused on minimizing the total cost, it has been proposed the methodology which can enhance the efficiency and fairness of asset utilization, simultaneously. First of all, it has been adopted the Cluster-First Route-Second (CFRS) approach. Based on the location of customers, we have grouped customers as clusters by using four different clustering algorithm such as K-Means, K-Medoids, DBSCAN, Model-based clustering and a procedural approach, Fisher & Jaikumar algorithm. After getting the result of clustering, it has been developed the optiamal vehicle routes within clusters. Based on the result of numerical experiments, it can be said that the propsed approach based on CFRS may guarantee the better performance in terms of total travelling time and distance. At the same time, the variance of travelling distance and number of visiting customers among vehicles, it can be concluded that the proposed approach can guarantee the better performance of assigning tasks in terms of fairness.

Optimization of Unit Commitment Schedule using Parallel Tabu Search (병렬 타부 탐색을 이용한 발전기 기동정지계획의 최적화)

  • Lee, yong-Hwan;Hwang, Jun-ha;Ryu, Kwang-Ryel;Park, Jun-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.645-653
    • /
    • 2002
  • The unit commitment problem in a power system involves determining the start-up and shut-down schedules of many dynamos for a day or a week while satisfying the power demands and diverse constraints of the individual units in the system. It is very difficult to derive an economically optimal schedule due to its huge search space when the number of dynamos involved is large. Tabu search is a popular solution method used for various optimization problems because it is equipped with effective means of searching beyond local optima and also it can naturally incorporate and exploit domain knowledge specific to the target problem. When given a large-scaled problem with a number of complicated constraints, however, tabu search cannot easily find a good solution within a reasonable time. This paper shows that a large- scaled optimization problem such as the unit commitment problem can be solved efficiently by using a parallel tabu search. The parallel tabu search not only reduces the search time significantly but also finds a solution of better quality.

Fraud detection support vector machines with a functional predictor: application to defective wafer detection problem (불량 웨이퍼 탐지를 위한 함수형 부정 탐지 지지 벡터기계)

  • Park, Minhyoung;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • We call "fruad" the cases that are not frequently occurring but cause significant losses. Fraud detection is commonly encountered in various applications, including wafer production in the semiconductor industry. It is not trivial to directly extend the standard binary classification methods to the fraud detection context because the misclassification cost is much higher than the normal class. In this article, we propose the functional fraud detection support vector machine (F2DSVM) that extends the fraud detection support vector machine (FDSVM) to handle functional covariates. The proposed method seeks a classifier for a function predictor that achieves optimal performance while achieving the desired sensitivity level. F2DSVM, like the conventional SVM, has piece-wise linear solution paths, allowing us to develop an efficient algorithm to recover entire solution paths, resulting in significantly improved computational efficiency. Finally, we apply the proposed F2DSVM to the defective wafer detection problem and assess its potential applicability.

A Study on the Optimal Limit State Design of Reinforced Concrete Flat Slab-Column Structures (한계상태설계법(限界狀態設計法)에 의한 철근(鐵筋)콘크리트 플래트 슬라브형(型) 구조체(構造體)의 최적화(最適化)에 관한 연구(研究))

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.11-26
    • /
    • 1984
  • The aim of this study is to establish a synthetical optimal method that simultaneously analyze and design reinforced concrete flat slab-column structures involving multi-constraints and multi-design variables. The variables adopted in this mathematical models consist of design variables including sectional sizes and steel areas of frames, and analysis variable of the ratio of bending moment redistribution. The cost function is taken as the objective function in the formulation of optimal problems. A number of constraint equations, involving the ultimate limit state and the serviceability limit state, is derived in accordance with BSI CP110 requirements on the basis of limit state design theory. Both objective function and constraint equations derived from design variables and an analysis variable generally become high degree nonlinear problems. Using SLP as an analytical method of nonlinear optimal problems, an optimal algorithm is developed so as to analyze and design the structures considered in this study. The developed algorithm is directly applied to a few reinforced concrete flat slab-column structures to assure the validity of it and the possibility of optimization From the research it is found that the algorithm developed in this study is applicable to the optimization of reinforced concrete flat slab column structures and it converges to a optimal solution with 4 to 6 iterations regardless of initial variables. The result shows that an economical design can be possible when compared with conventional designs. It is also found that considering the ratio of bending moment redistribution as a variable is reasonable. It has a great effect on the composition of optimal sections and the economy of structures.

  • PDF

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

Design of Steel Structures Using the Neural Networks with Improved Learning (개선된 인공신경망의 학습방법에 의한 강구조물의 설계)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.661-672
    • /
    • 2005
  • For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions

Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Communication Costs in Distributed Real-Time Systems (분산 실시간 시스템에서 우선순위와 통신비용을 고려한 주기적 타스크들의 중복 스케줄링)

  • Park, Mi-Kyoung;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.378-389
    • /
    • 1999
  • Parallel tasks in distributed real-time systems can be divided into several subtasks and be executed in parallel according to their real-time attributes. But, it is difficult to gain the optimal solution which is to allocate a tasks deadline into the subtasks deadline while minimizing the subtasks deadline miss. Tn this Paper, we propose the algorithm that allocates deadlines into each subtask, according to the attributes of each subtask(i.e. using communication time and execution time to periodic tasks). Also, we suggest a processor mapping algorithm that considers the communication time among the processors and the effective duplication algorithm which is allocated to the identical processor for the purpose of improving the communication time between the subtasks. We can obtain a result that reduces IPC(Inter-Processor Communication) time and uses the idle processor through applying effective real-time attributes to FUTD(Fully connected, Unbounded Task Duplication) algorithms. As a result, we can improve the average processor utilization.

  • PDF