• Title/Summary/Keyword: Optimal Production Level

Search Result 412, Processing Time 0.027 seconds

Optimization of Biodiesel Production from Waste Frying Oil using Response Surface Method (Response Surface Method를 이용한 폐식용유로부터 바이오디젤 생산의 최적화)

  • 이세진;김의용
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.396-402
    • /
    • 2002
  • Biodiesel has attracted considerable attention during the past decade as a biodegradable, nontoxic, and renewable fuel, Several processes for the production of biodiesel have been developed, among which transesterification under alkali-catalysis gives high level yield of methyl esters in short reaction times. In this research, response surface method was applied to optimize the transesterification reaction under alkali-catalysis. It was found that reaction temperature, reaction time, and agitation rate of reactor had profound effects among the seven variables affecting on biodiesel conversion. The optimal temperature, reaction time, and agitation speed were 67$^{\circ}C$, 68 minutes, and 94 rpm, respectively. Under the optimal conditions, the experimental value of biodiesel conversion was 99.7%.

Production and Characterization of Raw Starch Hydrolyzing Enzyme from Bacteria (세균에 의한 생전분 분해효소의 생성 및 특성)

  • Park, In-Shik;Nam, In;Kho, Sun-Ok;Kim, Gi-Nahm;Suh, Kyung-Soon
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.244-250
    • /
    • 1990
  • A bacterium capable of hydrotyzing raw starch was isolated from soil, which was identified as a strain of Bacillue. The effects of culture conditions and medium compositions on the enzyme production were investigated. Among tested carbon sources, soluble starch and wheat starch were most effective for the production of the enzyme, and the level of concentration for the optimal enzyme production was 0.5%. For nitrogen sources, polypeptone was best for the enzyme production, with the level of 0.5%. The enzyme was maximally produced by cultivating the organism at medium of initial pH 6.5, and temperature of $35^{\circ}C$. The enzyme was partially purified by Sepharose CL-6B gel filtration and DEAESephacel ion-exchange chromatography. The optimal pH and temperature for the enzyme reaction were 6.5 and $70^{\circ}C$, respectively. The enzyme most stable at pH 8.0, and temperature up to $60^{\circ}C$. In kinetic studies, the k, values for corn, wheat, rice and potato starch were 1.7, 1.4,2.5 and 1.090, respectively.

  • PDF

Design of Optimal Parameter using Genetic Algorithms (유전자알고리즘을 이용한 최적 파라미터의 설계)

  • 이대훈;박명규;김용범;김복만;박유석
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.41
    • /
    • pp.15-23
    • /
    • 1997
  • Because of various request of consummer and rapidly chang, a product change and new-production come out variously. To satisfy the condition, companies must develop the product of rapidity and good quality. But, a product design difficults to consider many parameters and increase the level of each parameter. In order to solve this problem, this paper studies out algorithms taken into account more parameters and increased the level of parameters using the Genetic Algorithms. Because this algorithm can search detailed and wide for the level of parameter, in case of new-product development, we can use it for designing parameters of new-product.

  • PDF

Shape Optimization of the Cross Section for a Non-circular Spring Wire of Valve Springs for an Automotive Engine (자동차 엔진 밸브 스프링에 사용되는 비원형 스프링 선의 단면 형상 최적화)

  • Kim, Do-Joong;Kim, Young-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Valve springs with non-circular cross-section are widely used in automotive engines. Because of the reduced height, the oval cross-section provides some merits in its install height and stress distribution. This paper introduces a new method to generate optimal shape of the non-circular cross-section. For given width and height, arbitrary shape of the cross-section are described using the Hermite spline curves. Cross-section area and maximum stress level are chosen as performance indices, and nonlinear optimization problems are formulated with inequality constraints. Compared to a production spring wire, cross-section area can be reduced about 2.4 [%] without increasing maximum stress level. In addition, the other approach gives an optimum cross-section which reduces maximum stress level of 2.0 [%] without increasing cross-section area.

Culture Parameters for Nonactin Production by Streptomyces viridochromogenes JM-4151

  • Lee, Sang-Han;Lee, Dong-Sun;Lee, Jin-Man;Kim, Tae-Ho;Kim, Jong-Guk;Han, Kab-Cho;Lee, Jin-Sik;Kwon, Gi-Seok
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.7-10
    • /
    • 2001
  • Nonactin is the parent compound of a group of ionophore antibiotics, that known as the macrotetrolides. In previous report, in th course of screening superoxide radical-generating compounds from microbial sources, we first screened Streptomyces viridochromogenes JM-4151 that produces nonactin. It was proved that nonactin is superoxide radical-producing compound. In present study, we examined the optimal culture conditions of nonacin. Th optimal culture conditions for nonactin production were as follows: 1% soluble starch, 1% yeast extract, 0.2% ammonium nitrate, 0.06% magnesium sulfate, 0.2% calcium carbonate, initial pH 7.0 at 28$^{\circ}C$ for 96 h. The highest nonactin production was achieved in the production medium of initial pH7.0 at 28$^{\circ}C$ for 96h. The threshold level of dissolved oxygen was found to be above 33.2% at 28$^{\circ}C$ when 1% soluble starch was used as a carbon source. These results suggest that S. viridochromogenes JM-4151 might be a possible strain for industrial nonactin producer.

  • PDF

Application of Factorial Experimental Designs for Optimization of Cyclosporin A Production by Tolypocladium inflatum in Submerged Culture

  • Abdel-Fattah, Y.R.;Enshasy, H. El;Anwar, M.;Omar, H.;Abolmagd, E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1930-1936
    • /
    • 2007
  • A sequential optimization strategy based on statistical experimental designs was employed to enhance the production of cyclosporin A (CyA) by Tolypocladium inflatum DSMZ 915 in a submerged culture. A 2-level Plackett-Burman design was used to screen the bioprocess parameters significantly influencing CyA production. Among the 11 variables tested, sucrose, ammonium sulfate, and soluble starch were selected, owing to their significant positive effect on CyA production. A response surface methodology (RSM) involving a 3-level Box-Behnken design was adopted to acquire the best process conditions. Thus, a polynomial model was created to correlate the relationship between the three variables and the CyA yield, and the optimal combination of the major media constituents for cyclosporin A production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows (g/l): sucrose, 20; starch, 20; and ammonium sulfate, 10. The predicted optimum CyA yield was 113 mg/l, which was 2-fold the amount obtained with the basal medium. Experimental verification of the predicted model resulted in a CyA yield of 110 mg/l, representing 97% of the theoretically calculated yield.

Regeneration and Acclimatization of Regenerants in Long-term in vitro Culture of Japanese Blood Grass (Imperata cylindrica 'Rubra')

  • Eon-Yak Kim;In-Jin Kang;Ye-Jin Lee;Baul Yang;Vipada Kantayos;Chang-Hyu Bae
    • Korean Journal of Plant Resources
    • /
    • v.36 no.6
    • /
    • pp.588-596
    • /
    • 2023
  • Long-term culture of cell lines is an important issue in in vitro culture and in plant science. In this study, the regeneration ability and ex vitro acclimatization of regenerants were evaluated. The ploidy level of regenerants derived from long-term cultured cell lines was measured in Imperata cylindrica 'Rubra', Poaceae. Adventitious buds (shoots) were successfully induced from five-year-cultured calli on MS medium containing 0.1 mg/L BA or 2.0 mg/L TDZ, combined with 0.01 mg/L auxins (IAA, IBA, NAA and 2,4-D), respectively. Adventitious roots were also induced on MS medium containing 0.01 mg/L auxins (IBA, NAA and 2,4-D), respectively. Interestingly, regenerants with both red and green leaf were successfully obtained when regenerants were cultured on MS medium with 9% sucrose. Regenerants derived from long-term cultured calli were transferred to pots using an optimal acclimatization process and successfully adapted to both pot and soil conditions. Moreover, the ploidy level was measured using calli and regenerants that had been kept on MS medium containing various kinds of plant growth regulators (PGRs).

Flavobacterium meningosepticum의 Nucleoside Oxidase와 Peroxidase 생산특성

  • 최양문;조홍연;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.693-698
    • /
    • 1996
  • Optimal cultural conditions were investigated for the maximal productivity of nucleoside oxidase and peroxidase from Flavobacterium meningosepticum. Sucrose and Polypepton were the best as a carbon source and a nitrogen source. Fe$^{2+}$, Fe$^{3+}$ and Cu$^{2+}$ increased the activities of the two enzymes and were essential in medium containing peptone as a nitrogen source. Nucleoside derivatives such as 2'-deoxyguanosine, 2'-deoxyadenosine, N$^{6}$ -methyladenosine and 1-methyladenosine were effective for the production of the two enzymes. Especially, the addition of N$^{6}$ -methyladenosine and 1-methyladenosine decreased cell growth, but increased the two enzyme activities. High level of oxygen also was an essential factor for formation and/or induction of these enzymes. From the summary of this study about optimal medium and environmental conditions, nucleoside oxidase was biosynthesized in proportion to peroxidase. These results suggested that the role of peroxidase should be degradation of H$_{2}$O$_{2}$ generated by nucleoside oxidase in the cell of Flavobacterium meningosepticum.

  • PDF

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

Production of 1-Deoxynojirimycin by Streptomyces sp. SID9135

  • Paek, Nam-Soo;Kang, Dae-Jung;Choi, Yong-Jin;Lee, Jung-Jun;Kim, Tae-Han;Kim, Kee-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.262-266
    • /
    • 1997
  • To increase the high production of 1-deoxynojirimycin (DNJ) from Streptomyces sp. SID9135, the effect of various carbon sources, nitrogen sources, cationic metal ions, the initial pH of the medium, and agitation speed were investigated. The most effective carbon and nitrogen sources were found to be lactose 2.5% (w/v) and soybean meal 2.0% (w/v), respectively. None of the cationic metal ions examined had any detectable stimulating effect on DNJ production except $Fe^{+2}$ ion. The initial optimum pH for DNJ production ranged from 6-8 and agitation speed was most effective at 400 rpm. In the jar fermentor experiments under optimal culture conditions, the accumulation of DNJ reached about $640{\mu}g$/ml after 5 days of cultivation and the level remained the same for a further two days.

  • PDF