• Title/Summary/Keyword: Optimal Process Mean

Search Result 192, Processing Time 0.026 seconds

Design Optimization Based on Designer's Preferences for the Mean and Variance (평균과 분산에 관한 설계자 선호에 기초한 설계 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In Taguchi's quadratic expected loss function used as robustness metric of performance characteristics, the mean and variance contributions are confounded. The consolidation of the mean and variance in the expected loss function may not always be the ideal approach. This paper presents a procedure for multi-attributes design optimization, where the mean and variance of performance characteristics are considered as separate attributes having designer's relative preferences for them and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) is introduced to attain robust optimal design. The effectiveness of proposed approach is shown with an example of a weld line minimization problem in the injection molding process.

  • PDF

Problems of Special Causes in Feedback Adjustment

  • Lee, Jae-June;Cho, Sin-Sup
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.2
    • /
    • pp.201-211
    • /
    • 2004
  • Process adjustment is a complimentary tool to process monitoring in process control. Process adjustment directs on maintaining a process output close to a target value by manipulating another controllable variable, by which significant process improvement can be achieved. Therefore, this approach can be applied to the 'Improve' stage of Six Sigma strategy. Though the optimal control rule minimizes process variability in general, it may not properly function when special causes occur in underlying process, resulting in off-target bias and increased variability in the adjusted output process, possibly for long periods. In this paper, we consider a responsive feedback control system and the minimum mean square error control rule. The bias in the adjusted output process is investigated in a general framework, especially focussing on stationary underlying process and the special cause of level shift type. Illustrative examples are employed to illustrate the issues discussed.

Problems of Special Causes in Feedback Adjustment

  • Lee Jae June;Cho Sinsup;Lee Jong Seon;Ahn Mihye
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.425-429
    • /
    • 2004
  • Process adjustment Is a complimentary tool to process monitoring in process control. Process adjustment directs on maintaining a process output close to a target value by manipulating another controllable variable, by which significant process improvement can be achieved. Therefore, this approach can be applied to the 'Improve' stage of Six Sigma strategy. Though the optimal control rule minimizes process variability in general, it may not properly function when special causes occur in underlying process, resulting in off-target bias and increased variability in the adjusted output process, possibly for long periods. In this paper, we consider a responsive feedback control system and the minimum mean square error control rule. The bias in the adjusted output process is investigated in a general framework, especially focussing on stationary underlying process and the special cause of level shift type. Illustrative examples are employed to illustrate the issues discussed.

  • PDF

A Study on the Optimization of Linear Equalizer for Underwater Acoustic Communication (수중음향통신을 위한 선형등화기의 최적화에 관한 연구)

  • Lee, Tae-Jin;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.637-641
    • /
    • 2012
  • In this paper, the method that reduce a computation time by optimizing computation process is proposed to realize low-power underwater acoustic communication system. At first, dependency of decision delay on tap length of linear equalizer was investigated. Variance is calculated based on this result, and the optimal decision delay bound is estimated. In addition to decide optimal tap length with decision delay, we extracted the MSE(Mean Square Error) graph. From the graph, we obtained variance value of the MSE-decision delay, and estimated the optimum decision delay range from the variance value. Also, using the extracted optimal parameters, we performed a simulation. According to the result, the simulation employing optimal tap length, which is only 40% of maximum tap length, showed a satisfactory performance comparable to simulation employing maximum tap length. We verified that the proposed method has 33% lower tap length than maximal tap length via sea trial.

Joint Transmitter and Receiver Optimization for Improper-Complex Second-Order Stationary Data Sequence

  • Yeo, Jeongho;Cho, Joon Ho;Lehnert, James S.
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this paper, the transmission of an improper-complex second-order stationary data sequence is considered over a strictly band-limited frequency-selective channel. It is assumed that the transmitter employs linear modulation and that the channel output is corrupted by additive proper-complex cyclostationary noise. Under the average transmit power constraint, the problem of minimizing the mean-squared error at the output of a widely linear receiver is formulated in the time domain to find the optimal transmit and receive waveforms. The optimization problem is converted into a frequency-domain problem by using the vectorized Fourier transform technique and put into the form of a double minimization. First, the widely linear receiver is optimized that requires, unlike the linear receiver design with only one waveform, the design of two receive waveforms. Then, the optimal transmit waveform for the linear modulator is derived by introducing the notion of the impropriety frequency function of a discrete-time random process and by performing a line search combined with an iterative algorithm. The optimal solution shows that both the periodic spectral correlation due to the cyclostationarity and the symmetric spectral correlation about the origin due to the impropriety are well exploited.

Profit Margin Hedging Strategy in Crude Oil Purchasing (이윤율헤징을 이용한 원유 구매 전략)

  • Yang, Ji Hye;Kim, Hyun Seok
    • Environmental and Resource Economics Review
    • /
    • v.26 no.4
    • /
    • pp.499-517
    • /
    • 2017
  • The purpose of this article is to show profit margin hedging can be an optimal strategy in crude oil purchasing. This study theoretically analyzes profit margin hedging strategy is optimal in crude oil purchasing using expected target utility function and conducts simulations to show if the profit margin hedging is profitable. In addition, this study tests existence of mean reversion of crude oil futures prices to confirm the theory that profit margin hedging is more profitable than other strategies, such as always hedging or buying at expiration with spot price, if futures prices are mean reverting. The simulation results show that the expected utility of profit margin hedging higher than other strategies. Although we cannot find any evidence that crude oil futures prices follow mean reverting process, we can conclude that profit margin hedging can be optimal strategy in crude oil purchasing based on theoretical proof and simulation results.

EFFICIENT SPECKLE NOISE FILTERING OF SAR IMAGES (SAR 영상의 SPECKLE 잡음 제거)

  • 김병수;최규홍;원중선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.175-182
    • /
    • 1998
  • Any classification process using SAR images presupposes the reduction of multiplicative speckle noise, since the variations caused by speckle make it extremely difficult to distinguish between neighboring classes within the feature space. Therefore, several adaptive filter algorithms have been developed in order to distinguish between them. These algorithms aim at the preservation of edges and single scattering peaks, and smooths homogeneous areas as much as possible. This task is rendered more difficult by the multiplicative nature of the speckle noise the signal variation depends on the signal itself. In this paper, LEE(Lee 1908) and R-LEE(Lee 1981) filters using local statistics, local mean and variance, are applied to RADARSAT SAR images. Also, a new method of speckle filtering, EPOS(Edge Preserving Optimal Speckle)(Hagg & Sties 1994) filter based on the statistical properties of speckle noise is described and applied. And then, the results of filtering SAR images with LEE, R-LEE and EPOS filters are compared with mean and median filters.

  • PDF

Study on Simulation of Fuel Injection Nozzle for Marine Medium Speed Diesel Engine (선박용 중속디젤엔진 연료분사노즐 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-47
    • /
    • 2013
  • This study was carried out to improve the design of fuel injection nozzle for marine medium speed diesel engine. For this purpose, fuel injection nozzle was modeled and simulated using CATIA V5R19 and FLUENT & MSC Nastran. Analyses of flow and heat transfer, respectively, were performed to find the optimal design of fuel injection nozzle. As the results, big pressure drop, which may lead to cavitation damage, was occurred at inlet of fuel injection hole with diameter 0.3mm. Furthermore, it was confirmed that the increase of mean temperature of fuel injection nozzle was almost a half in comparison with that of fuel injection nozzle tip.

Unscented Filtering in a Unit Quaternion Space for Spacecraft Attitude Estimation

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.894-900
    • /
    • 2005
  • A new approach to the straightforward implementation of the unscented filter in a unit quaternion space is proposed for spacecraft attitude estimation. Since the unscented filter is formulated in a vector space and the unit quaternions do not belong to a vector space but lie on a nonlinear manifold, the weighted sum of quaternion samples does not produce a unit quaternion estimate. To overcome this difficulty, a method of weighted mean computation for quaternions is derived in rotational space, leading to a quaternion with unit norm. A quaternion multiplication is used for predicted covariance computation and quaternion update, which makes a quaternion in a filter lie in the unit quaternion space. Since the quaternion process noise increases the uncertainty in attitude orientation, modeling it either as the vector part of a quaternion or as a rotation vector is considered. Simulation results illustrate that the proposed approach successfully estimates spacecraft attitude for large initial errors and high tip-off rates, and modeling the quaternion process noise as a rotation vector is more optimal than handling it as the vector part of a quaternion.

  • PDF

Multi-Level Response Surface Approximation for Large-Scale Robust Design Optimization Problems (다층분석법을 이용한 대규모 파라미터 설계 최적화)

  • Kim, Young-Jin
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • Robust Design(RD) is a cost-effective methodology to determine the optimal settings of control factors that make a product performance insensitive to the influence of noise factors. To better facilitate the robust design optimization, a dual response surface approach, which models both the process mean and standard deviation as separate response surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for process mean and standard deviation are partitioned and estimated based on the multi-level approximation method, which may reduce the number of experimental runs necessary for fitting response surface models to a great extent. The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.