• 제목/요약/키워드: Optimal Placement of Measurement Point

검색결과 5건 처리시간 0.017초

전력시스템 고조파 상태 추정에서 면역 알고리즘 적용 (Application of Immune Algorithm for Harmonic State Estimation)

  • 왕용필;박인표;정형환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권12호
    • /
    • pp.645-654
    • /
    • 2004
  • The design of a measurement system to perform Harmonic State Estimation(HSE) is a very complex problem. In particular, the number of available harmonic analysis measurement instruments is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents an optimal algorithm of HSE which is based on an optimal placement of measurement points using Immune Algorithm (IAs). This IA-HSE has been applied to power system for the validation of an optimal algorithm of HSE. The study results have indicated an economical and effective method for optimal placement of measurement points using Immune Algorithm (IAs) in the HSE.

페이저 측정기 치적배치를 위한 초기 배치 전략 (An Initial Placement Strategy for Optimal Placement of Phasor Measurement Units in Power Systems)

  • 조기선;신중린;박종배;채명석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.342-344
    • /
    • 2002
  • This paper presents a new strategy to find starting points for placing optimally Phasor Measurement Units(PMUs). The performance of the starting point, initial placement set of PMUs, affect critically the computational burden and/or time, because the Optimal PMU Placement (OPP) problem is formulated the combinatorial optimization. By analyzing the properties of OPP solutions on IEEE sample systems in detail, a new strategy for initial PMU placement, in this paper, is proposed. To verify the performance of the suggested strategy, the comparison with the existing strategy and the new one, on IEEE sample systems. is performed. By using the new strategy, the numbers of search spaces to solve the OPP problem is drastically decreased.

  • PDF

전력시스템 고조파 상태 춘정에서 GA를 미용한 최적 측정위치 선정 (Optimal Placement of Measurement Using GAs in Harmonic State Estimation of Power System)

  • 정형환;왕용필;박희철;안병철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권8호
    • /
    • pp.471-480
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. Among the reasons for its complexity are the system size, conflicting requirements of estimator accuracy, reliability in the presence of transducer noise and data communication failures, adaptability to change in the network topology and cost minimization. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs) which is widely used in areas such as: optimization of the objective function, learning of neural networks, tuning of fuzzy membership functions, machine learning, system identification and control. This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

배전계통의 VTHD레벨 제시를 위한 최적측정위치 선정 (Optimal Measurement Placement for VTHD level presentation in Distribution Systems)

  • 박희철;조남훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.378-380
    • /
    • 2003
  • This paper presents the optimal point for measuring harmonic levels in distribution systems. Harmonic should be measure PCC (Point of Common Coupling), where is extended over distribution systems, but some PCCs are limited for economical and technical reason : for this reason, the harmonic measurement for a real distribution system and computer simulation are performed to find the optimal PCC in this paper.

  • PDF

모니터링 정확도와 운용 강건성을 고려한 개인전투체계용 착용형 생체센서 어레이의 최적 위치 분석 (Analysis of the Optimal Location of Wearable Biosensor Arrays for Individual Combat System Considering Both Monitoring Accuracy and Operational Robustness)

  • 하슬기;박상헌;임현철;백승호;김도경;윤상희
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.287-297
    • /
    • 2019
  • Monitoring for the physiological state of a solider is essential to the realization of individual combat system. Despite all efforts over the last decades, there is no report to point out the optimal location of the wearable biosensors considering both monitoring accuracy and operational robustness. In response, we quantitatively measure body temperature and heartrate from 34 body parts using 2 kinds of biosensor arrays, each of which consists of a thermocouple(TC) sensor and either a photoplethysmography(PPG) sensor or an electrocardiography(ECG) sensor. The optimal location is determined by scoring each body part in terms of signal intensity, convenience in use, placement durability, and activity impedance. The measurement leads to finding the optimal location of wearable biosensor arrays. Thumb and chest are identified as best body parts for TC/PPG sensors and TC/ECG sensors, respectively. The findings will contribute to the successful development of individual combat system.