• Title/Summary/Keyword: Optimal Pipe Size Design

Search Result 16, Processing Time 0.021 seconds

Analysis of Steady Flow by Main Pipe Arrangement in the Water Distributing Pipe Network (배수관망(配水管網)의 간선배치(幹線配置)에 따른 정류(定流)흐름 해석(解析))

  • Lee, Jeung Seok;Park, Ro Sam;Kim, Jee Hak;Choi, Yun Young;Ahn, Seung Seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.73-82
    • /
    • 1999
  • In this study, the optimal analysis for pipe network is performed for the combined ideal pipe network system(CASE 1, CASE 2 and CASE 3) which is composed of 25 nodes, 41 elements, and 1 fixed nodal head with evaluating pressure variation distribution of main and branch in grid composed drainage pipe network. The linear analysis technique used as the analysis method in this study, the KYPIPE being used extensively as the linear technique to design and analysis of pipe network is applied. Firstly, in the analysis of pipe network, the CASE 2 and CASE 3 supply same thing(value) in the result of considering the total flow provided each pipeline, but in the general intension in the case of CASE 2, relative width of supply is more large than CASE 1 and CASE 3. Secondly, in the analysis technique of pipe network, CASE 3 is analysed largest as a result of comparing with same heads, and in the order of their size CASE 2 and CASE 1 were determined but the difference doesn't appear to be obvious. Thirdly, as the result of determining main factor, pressure in the design and analysis of net work. CASE 3 is from Node 3 to 25 than CASE 1 and CASE 2 and it is determined in the order of their size, CASE 2 and CASE 1. Finally, in this study, discharge flow distribution is evaluated in the same condition with 3-type CASE in the case of branch position for designing optimal composed drainage pipe network. As the result of that, branch pipe perform. Therefore, it is thought that the efficient and reasonable management of water supply and sewerage design will be possible if it give all our energies to study at the pipe system design in and out of country in the future.

  • PDF

Optimal Mechanism Design of In-pipe Cleaning Robot (관로 청소 로봇의 최적 설계)

  • Jung, C.D.;Chung, W.J.;Ahn, J.S.;Shin, G.S.;Kwon, S.J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.123-129
    • /
    • 2012
  • Recently, interests on cleaning robots workable in pipes (termed as in-pipe cleaning robot) are increasing because Garbage Automatic Collection Facilities (i.e, GACF) are widely being installed in Seoul metropolitan area of Korea. So far research on in-pipe robot has been focused on inspection rather than cleaning. In GACF, when garbage is moving, the impurities which are stuck to the inner face of the pipe are removed (diameter: 300 mm or 400 mm). Thus, in this paper, by using TRIZ (Inventive Theory of Problem Solving in Russian abbreviation), an in-pipe cleaning robot of GACF with the 6-link sliding mechanism will be proposed, which can be adjusted to fit into the inner face of pipe using pneumatic pressure(not spring). The proposed in-pipe cleaning robot for GACF can have forward/backward movement itself as well as rotation of brush in cleaning. The robot body should have the limited size suitable for the smaller pipe with diameter of 300 mm. In addition, for the pipe with diameter of 400 mm, the links of robot should stretch to fit into the diameter of the pipe by using the sliding mechanism. Based on the conceptual design using TRIZ, we will set up the initial design of the robot in collaboration with a field engineer of Robot Valley, Inc. in Korea. For the optimal design of in-pipe cleaning robot, the maximum impulsive force of collision between the robot and the inner face of pipe is simulated by using RecurDyn(R) when the link of sliding mechanism is stretched to fit into the 400 mm diameter of the pipe. The stresses exerted on the 6 links of sliding mechanism by the maximum impulsive force will be simulated by using ANSYS$^{(R)}$ Workbench based on the Design Of Experiment(in short DOE). Finally the optimal dimensions including thicknesses of 4 links will be decided in order to have the best safety factor as 2 in this paper as well as having the minimum mass of 4 links. It will be verified that the optimal design of 4 links has the best safety factor close to 2 as well as having the minimum mass of 4 links, compared with the initial design performed by the expert of Robot Valley, Inc. In addition, the prototype of in-pipe cleaning robot will be stated with further research.

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF

Efficiency Evaluation of Harmony Search Algorithm according to Constraint Handling Techniques : Application to Optimal Pipe Size Design Problem (제약조건 처리기법에 따른 하모니써치 알고리즘의 효율성 평가 : 관로 최소비용설계 문제의 적용)

  • Yoo, Do Guen;Lee, Ho Min;Lee, Eui Hoon;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4999-5008
    • /
    • 2015
  • The application of efficient constraint handling technique is fundamental method to find better solutions in engineering optimization problems with constraints. In this research four of constraint handling techniques are used with a meta-heuristic optimization method, harmony search algorithm, and the efficiency of algorithm is evaluated. The sample problem for evaluation of effectiveness is one of the typical discrete problems, optimal pipe size design problem of water distribution system. The result shows the suggested constraint handling technique derives better solutions than classical constraint handling technique with penalty function. Especially, the case of ${\varepsilon}$-constrained method derives solutions with efficiency and stability. This technique is meaningful method for improvement of harmony search algorithm without the need for development of new algorithm. In addition, the applicability of suggested method for large scale engineering optimization problems is verified with application of constraint handling technique to big size problem has over 400 of decision variables.

Analysis of Mackerel Sorting Performance for Development of Automatic Mackerel Grader (고등어 자동 선별기 개발을 위한 고등어 선별 성능 분석)

  • Jun, Chul-Woong;Sohn, Jeong-Hyun;Choi, Myung Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.115-121
    • /
    • 2016
  • A mackerel grader is a machine for sorting mackerel according to size. In this study, the dynamic deflection and optimal sorting simulation of a mackerel grader was carried out by using multi-body dynamics. To analyze the dynamic deflection of the roller, RecurDyn, a multi-body dynamics analysis program, was used. The dynamic deflection of the roller pipe was analyzed according to the inclination of the roller pipe. When the inclination of the roller pipe was 30 degrees, the roller indicated the maximum deflection of about 6.3 mm at the center of the mass. To simulate the mackerel sorting, the mackerel grader machine was modeled, and the contact simulation between the mackerel model and the rotating roller pipe was carried out. When the inclination of the roller frame was 7 degrees, the mackerel grader indicated optimal sorting performance.

Optimal Design of Branched Water Supply System with GIS (GIS를 이용한 분기형 관로의 최적설계)

  • Kim, Joong-Hoon;Yeon, Sang-Ho;Geem, Zong-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.55-61
    • /
    • 1996
  • The objective of this paper is to show an optimal design model for branched water supply system which also can find the optimal location of pumping stations using linear programming. GIS is utilized in this model to better handle the data and the results front the optimization. The developed model considers hydraulic influences of some appurtenances such as supply tunnels and a filtration plant The model also considers tunnel construction cost which should be treated differently from pipe construction cost Different from other models presently available, the model guarantees a nonnegative pressure at every junction node in the system. The objective function includes annual operation cost (electricity rate) ill addition to initial construction cost, thus producing a more reasonable decision. The model selects the optimal diameter not in the form of continuous number but in the form of commercial discrete diameter (pipe size) using the pipe lengths as decision variables instead of pipe diameters. The model not only determines the optimal pumping head for each pumping station but also finds the optimal location and number of pumping stations. GIS is used to handle hydraulic and budgetary data automatically and to visualize the results for the of optimal design of the system. The model has been applied to an existing water supply system. 'The results show that the optimization model with the aid of GIS is helpful in the decision-nulling process for the design of more economical systems, and can be dot into practice successfully.

  • PDF

A Study on the Topology Optimization of Electric Vehicle Cross beam using an Optimality Criteria Method in Determination of Arranging Hole( I ) (원공배열 결정에 최적기준법에 의한 전동차 크로스 빔의 위상최적화에 관한 연구( I ))

  • 전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.137-145
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. a lightweight vehicle body is salutary to save operating costs and fuel consumption. Therefore this study is to perform the size and the shape optimization of crossbeam for electric vehicle using the method of topology optimization to introduce the concept of homogenization based on optimality criteria method which is efficient for the problem having the number of design variables and a few boundary condition. this provides the method to determine the optimum position and shape of circular hole in the cross beam and then can achieve the optimal design to reduce weight.

A Study on the Topology Optimization of Electric Vehicle Cross beam using an Optimality Criteria Method in Determination of Arranging Hole (원공배열 결정에 최적기준법에 의한 전동차 크로스 빔의 위상최적화에 관한 연구)

  • 전형용;천홍정;송시엽;최중호
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.876-883
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. a lightweight vehicle body is salutary to save operating costs and fuel consumption. Therefore this study is to perform the size and the shape optimization of crossbeam fur electric vehicle using the method of topology optimization to introduce the concept of homogenization based on optimality criteria method which is efficient for the problem having the number of design variables and a few boundary condition. this provides the method to determine the optimum position and shape of circular hole in the cross beam and then can achieve the optimal design to reduce weight.

  • PDF

Development of Optimal Design Program of Air-Coal Pneumatic Conveying System to Enhance Combustion Efficiency (연소효율 향상을 위한 공기-미분탄 수송배관장치의 최적화 설계 프로그램 개발)

  • Ku, Jae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • This study describes to analyze the pressure drop characteristics for the air-particle flow in pneumatic coal powder conveying system and to proper design of the orifice located in the system to enhance combustion efficiency in furnace of the coal-fired power plant. Usually the system consists of the straight type pipe, the curved type pipe and the elbow, which cause increase of the pressure drop. In this study, the pressure drop arised in the system with straight and curved type pipes is analyzed with interactions of motion of air flow and particles. It is realized that total pressure drop increases with increasing of the pipe length and the angle of curved type pipe due to friction loss of air and particles in the system. The program for analysis of the pressure drop and optimum design of the orifice size for air flow control in the system is developed. The result is also compared with the existing system.

  • PDF

Efficiency Evaluation of Genetic Algorithm Considering Building Block Hypothesis for Water Pipe Optimal Design Problems (상수관로 최적설계 문제에 있어 빌딩블록가설을 고려한 유전 알고리즘의 효율성 평가)

  • Lim, Seung Hyun;Lee, Chan Wook;Hong, Sung Jin;Yoo, Do Guen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.294-302
    • /
    • 2020
  • In a genetic algorithm, computer simulations are performed based on the natural evolution process of life, such as selection, crossover, and mutation. The genetic algorithm searches the approximate optimal solution by the parallel arrangement of Schema, which has a short definition length, low order, and high adaptability. This study examined the possibility of improving the efficiency of the optimal solution by considering the characteristics of the building block hypothesis, which are one of the key operating principles of a genetic algorithm. This study evaluated the efficiency of the optimization results according to the gene sequence for the implementation in solving problems. The optimal design problem of the water pipe was selected, and the genetic arrangement order reflected the engineering specificity by dividing into the existing, the network topology-based, and the flowrate-based arrangement. The optimization results with a flowrate-based arrangement were, on average, approximately 2-3% better than the other batches. This means that to increase the efficiency of the actual engineering optimization problem, a methodology that utilizes clear prior knowledge (such as hydraulic properties) to prevent such excellent solution characteristics from disappearing is essential. The proposed method will be considered as a tool to improve the efficiency of large-scale water supply network optimization in the future.