• 제목/요약/키워드: Optimal Path Algorithm

검색결과 600건 처리시간 0.022초

이동로봇을 위한 실시간 하이브리드 경로계획 알고리즘 (Real-time Hybrid Path Planning Algorithm for Mobile Robot)

  • 이동훈;김동식;이종호;김동원
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.115-122
    • /
    • 2014
  • Mobile robot has been studied for long time due to its simple structure and easy modeling. Regarding path planning of the mobile robot, we suggest real-time hybrid path planning algorithm which is the combination of optimal path planning and real-time path planning in this paper. Real-time hybrid path planning algorithm modifies, finds best route, and saves calculating time. It firstly plan the route with real-time path planning then robot starts to move according to the planned route. While robot is moving, update the route as the best outcome which found by optimal path planning algorithm. Verifying the performance of the proposed method through the comparing real-time hybrid path planning with optimal path planning will be done.

무인 주행 차량의 하이브리드 경로 생성을 위한 B-spline 곡선의 조정점 선정 알고리즘 (A UGV Hybrid Path Generation Method by using B-spline Curve's Control Point Selection Algorithm)

  • 이희무;김민호;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.138-142
    • /
    • 2014
  • This research presents an A* based algorithm which can be applied to Unmanned Ground Vehicle self-navigation in order to make the driving path smoother. Based on the grid map, A* algorithm generated the path by using straight lines. However, in this situation, the knee points, which are the connection points when vehicle changed orientation, are created. These points make Unmanned Ground Vehicle continuous navigation unsuitable. Therefore, in this paper, B-spline curve function is applied to transform the path transfer into curve type. And because the location of the control point has influenced the B-spline curve, the optimal control selection algorithm is proposed. Also, the optimal path tracking speed can be calculated through the curvature radius of the B-spline curve. Finally, based on this algorithm, a path created program is applied to the path results of the A* algorithm and this B-spline curve algorithm. After that, the final path results are compared through the simulation.

Path Planning Algorithm Using the Particle Swarm Optimization and the Improved Dijkstra Algorithm

  • Kang, Hwan-Il;Lee, Byung-Hee;Jang, Woo-Seok
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.176-179
    • /
    • 2007
  • In this paper, we develop the path planning algorithm using the improved Dijkstra algorithm and the particle swarm optimization. To get the optimal path, at first we construct the MAKLINK on the world environment and then make a graph associated with the MAKLINK. From the graph, we obtain the Dijkstra path between the starting point and the destination point. From the optimal path, we search the improved Dijkstra path using the graph. Finally, applying the particle swarm optimization to the improved Dijkstra path, we obtain the optimal path for the mobile robot. It turns out that the proposed method has better performance than the result in [1].

  • PDF

최적 경로를 보장하는 효율적인 양방향 탐색 알고리즘 (Efficient Bidirectional Search Algorithm for Optimal Route)

  • 황보택근
    • 한국멀티미디어학회논문지
    • /
    • 제5권6호
    • /
    • pp.745-752
    • /
    • 2002
  • 도로에서의 최적 경로 탐색은 출발지와 목적지의 위치를 알고 있는 경우로서 탐색에 대한 일종의 사전 지식을 가진 탐색으로 A* 알고리즘이 널리 사용되고 있다. 단방향 A* 알고리즘은 최적의 경로를 보장해 주는 반면 탐색 시간이 많이 소요되고 양방향 A* 알고리즘은 최적 경로를 보장해 주지 못하거나 최적 경로 보장을 위해서는 오히려 단방향 A* 보다 탐색 시간이 더 많이 소요될 수도 있다. 본 논문에서는 탐색 시간이 우수하며 최적 경로를 보장하는 새로운 양방향 A* 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘의 효용성을 확인하기 위하여 실제 도로에 적용한 격과 정확한 최적 경로를 탐색하고 탐색 시간도 매우 우수한 것으로 확인되었다.

  • PDF

유전알고리즘을 이용한 이동로봇의 경로계획 및 충돌회피에 관한 연구 (A study on path planning and avoidance of obstacle for mobile robot by using genetic algorithm)

  • 김진수;이영진;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1193-1196
    • /
    • 1996
  • Genetic algorithm(GA) is useful to find optimal solution without any special mathematical modeling. This study presents to search optimal path of Autonomous Mobile Robot(AMR) by using GA without encoding and decoding procedure. Therefore, this paper shows that the proposed algorithm using GA can reduce the computation time to search the optimal path.

  • PDF

이산 경로 시스템에서 유전알고리듬을 이용한 최적음향탐색경로 전략 (Optimal Acoustic Search Path Planning Based on Genetic Algorithm in Discrete Path System)

  • 조정홍;김정해;김재수;임준석;김성일;김영선
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.69-76
    • /
    • 2006
  • The design of efficient search path to maximize the Cumulative Detection Probability(CDP) is mainly dependent on experience and intuition when searcher detect the target using SONAR in the ocean. Recently with the advance of modeling and simulation method, it has been possible to access the optimization problems more systematically. In this paper, a method for the optimal search path calculation is developed based on the combination of the genetic algorithm and the calculation algorithm for detection range. We consider the discrete system for search path, space, and time, and use the movement direction of the SONAR for the gene of the genetic algorithm. The developed algorithm, OASPP(Optimal Acoustic Search Path Planning), is shown to be effective, via a simulation, finding the optimal search path for the case when the intuitive solution exists. Also, OASPP is compared with other algorithms for the measure of efficiency to maximize CDP.

센서 스캐닝에 의한 자율주행로봇의 경로주행 알고리즘 (A Path Navigation Algorithm for an Autonomous Robot Vehicle by Sensor Scanning)

  • 박동진;안정우;한창수
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.147-154
    • /
    • 2002
  • In this paper, a path navigation algorithm through use of a sensor platform is proposed. The sensor platform is composed of two electric motors which make panning and tilting motions. An algorithm for computing a real path and an obstacle length is developed by using a scanning method that controls rotation of the sensors on the platform. An Autonomous Robot Vehicle(ARV) can perceive the given path by adapting this algorithm. A sensor scanning method is applied to the sensor platform for using small numbers of sensor. The path navigation algorithm is composed of two parts. One is to perceive a path pattern, the other is used to avoid an obstacle. An optimal controller is designed for tracking the reference path which is generated by perceiving the path pattern. The ARV is operated using the optimal controller and the path navigation algorithm. Based on the results of actual experiments, this algorithm for an ARV proved sufficient for path navigation by small number of sensors and for a low cost controller by using the sensor platform with a scanning method.

서브 골 설정에 의한 아날로그 셀룰라 비선형 회로망 기반 동적계획법 (Analog Celluar Nonlinear Circuits-Based Dynamic Programming with Subgoal Setting)

  • 김형석;박진희;손홍락;이재철;이왕희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권10호
    • /
    • pp.582-590
    • /
    • 2000
  • A fast optimal path planning algorithm using the analog Cellular Nonlinear Circuits(CNC) is proposed. The analog circuits based optimal path planning is very useful since most of the optimal path planning problems require real time computation. There has already been a previous study to implement the dynamic programming with analog circuits. However, it could not be applied for the practically large size of problems since the algorithm employs the mechanism of reducing its input current/voltage by the amount of cost, which causes outputs of distant cells to become zero. In this study, a subgoal-based dynamic programming algorithm to compute the optimal path is proposed. In the algorithm, the optimal paths are computed regardless of the distance between the starting and the goal points. It finds subgoals starting from the starting point when the output of the starting cell is raised from its initial value. The subgoal is set as the next initial position to find the next subgoal until the final goal is reached. The global optimality of the proposed algorithm is discussed and two different kinds of simulations have been done for the proposed algorithm.

  • PDF

Recursive compensation algorithm application to the optimal edge selection

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.79-84
    • /
    • 1992
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the optimal collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy and a traveling salesman problem strategy (TSP). The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Hopfield Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is used to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm.

  • PDF

입자 군집 최적화와 개선된 Dijkstra 알고리즘을 이용한 경로 계획 기법 (Path Planning Method Using the the Particle Swarm Optimization and the Improved Dijkstra Algorithm)

  • 강환일;이병희;장우석
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.212-215
    • /
    • 2008
  • 본 논문에서 개선된 Dijkstra 알고리즘과 입자 군집 최적화를 이용한 최적 경로 계획 알고리즘을 제안한다. 최적의 경로를 구하기 위해 우선 이동 로봇 공간에서 MAKLINK를 작성하고 MAKLINK와 관련한 그래프를 얻는다. 여기서 MAKLINK는 장애물의 꼭지점을 연결하면서 볼록집합이 만들어지도록 하는 모서리의 집합을 의미한다. 얻은 그래프에서 출발점과 도착점을 포함하여 Dijkstra 알고리즘을 이용하여 최소 비용 최적 경로를 얻고 이 최적의 경로에서 개선된 Dijkstra경로를 얻는다. 마지막으로 개선된 Dijkstra경로에서 입자 군집 최적화를 적용하여 최적의 경로를 얻는다. 제안된 방법이 논문[1]에 나온 결과보다 더 좋은 성능을 갖는다는 것을 실험을 통해 입증한다.