• 제목/요약/키워드: Optimal Operational Condition

검색결과 74건 처리시간 0.028초

광촉매공정 적용시 축산폐수의 처리특성 및 최적화 (Optimization and Characteristics of Removal Condition of Livestock Wastewater Using a Photocatalytic Process)

  • 박재홍
    • 청정기술
    • /
    • 제13권3호
    • /
    • pp.222-227
    • /
    • 2007
  • 축산폐수처리에 광촉매공정을 적용하였을 때 운전변수 중 자외선 조사거리, 반응면적, 부유고형물(SS)농도, 컬럼직경이 처리율에 미치는 영향을 실험실 규모의 광촉매반응기를 사용하여 실험하였다. 최적운전조건은 자외선 조사거리 3 cm (7 cm 이하 권장), 반응면적 $3.6\;m^2$, SS농도 40 mg/L (300 mg/L이하 권장), 컬럼직경 5 mm (10 mm 이하 권장)로서 COD, 색도, coliform 제거율이 반응시간 300 min에서 각각 49%, 53% 100%로 나타났다. 최적운전조건에서 난분해성 COD의 제거율은 57%로 나타나 광촉매반응이 난분해성 유기물제거에 어느 정도 효과가 있는 것으로 나타났다.

  • PDF

가정용 연료전지 시스템의 요금 분석을 통한 최적 운전 방법 검토 (Study on Optimization of Operation in household Fuel Cell System)

  • 박대흠;차광석;조호규;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.598-603
    • /
    • 2012
  • Despite the high efficiency and eco-friendly of Household Fuel Cell System it has hardly obtained popularity mainly due to its high prices. In order to encourage use of the system prices and operational expenses need to become economical. In this study, optimization through simulation was conducted to find out the optimal operational condition. As a result of simulation the system is operated with DSS operation from 5 O'clock to 19 O'clock for 14 hours at the constant output of 0.4kW to maximize reduction of energy rate. this DSS operation condition can reduce 200,000 won of energy rates in 35 pyoung apartment for a year. And, we can know that starting time of DSS operation don't effect to energy rates through the simulation. Furthermore, the household fuel cell system with the rated output of 1kW should be reduced to 0.4 - 0.6kW which can promote installation of household Fuel Cell System. Now, the household fuel cell system don't have been used widely due to economical efficiency. but, in the near future, Fuel Cell will be used to household by decrease of LNG price caused by development of shale gas.

데이터 마이닝 기법을 활용한 군용 항공기 비행 예측모형 및 비행규칙 도출 연구 (A Study on the Development of Flight Prediction Model and Rules for Military Aircraft Using Data Mining Techniques)

  • 유경열;문영주;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제31권3호
    • /
    • pp.177-195
    • /
    • 2022
  • Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.

액체로켓의 농후 가스발생기 최적설계 (Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine)

  • 권순탁;이창진
    • 한국항공우주학회지
    • /
    • 제32권5호
    • /
    • pp.91-96
    • /
    • 2004
  • 액체로켓 엔진에 사용되는 가스발생기를 최적설계 하였다. 추진제는 RP-1/LOx 이고, open cycle터보펌프 시스템을 사용하였으며, 가스발생기는 농후 (fuel-rich) 연소를 적용하였다. 최적설계의 목적함수는 주연소설의 비추력의 최대화이고 설계 제한조건은 가스발생기 연소 실온도와 터빈-펌프의 출력일치이다. 가스 발생기의 설계에 사용된 설계변수는 가스발생기 유량, O/F비, 터빈 노즐 입구 각, 부분분사비, 그리고 터빈 원주속도이며 이들을 이용하여 가스발생기의 열역학적 성능을 계산하였다. 그리고 설계 제한조건을 만족하면서 목적함수를 최대화 할 수 있는 가스발생기의 크기와 성능조건을 확인하였다. 설계된 가스발생기 기본형상은 연소시험에 적용된 후 최종적으로 결정된다.

Analysis of Operating Characteristics in Tidal Power Generation According to Tide Level

  • Hong, Jeong-Jo;Oh, Young-sun
    • International Journal of Contents
    • /
    • 제18권1호
    • /
    • pp.76-84
    • /
    • 2022
  • Tidal power generation plays a critical role in reducing greenhouse gas emissions. It uses a tidal force generated by gravitational force between the moon, the earth, and the sun. The change of seawater height generates the tide-generating force, and the magnitude of the change is the tide level. The tide level change has the same period as the tide-generating force twice a day, every 29.5 days, every year, and every 18.6 years. Sihwa Lake Tidal Power Station is Korea's first tidal power plant that began commercial power generation in August 2011 and has been accumulating a large volume of data on electricity production, power generation sales, sluice displacement, and tide levels. The purpose of this paper was to analyze the impact of the inefficiency factors affecting production and the tidal level change on tidal power generation and their characteristics using Sihwa Lake Tidal Power's operational performance data. Throughout this paper we show that tidal power generating operation is accurately predicting the trends of magnitude of tidal force to be periodical for each day. determining the drop to initiate the water turbine generator factoring the constraints on the operation of Sihwa Lake, and reflecting the water discharge through the floodgate and water turbine during the standby mode in the power generation plan to be in the optimal condition until the initiation of the next power generation can maximize power generation.

A Study of Tilting Train Signal System for Conventional Rail Speed-Up

  • Han, Seong-Ho;Lee, Su-Gil;Ko, Tae-Hwan;Song, Yong-Soo;Han, Young-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1741-1744
    • /
    • 2003
  • This study is a kind of preliminary research in order to propose and suggest the plan of performance improvement for the speed-up through the examination of operational condition on the field for signal system facility on the conventional railway, in order to obtain the elemental technology from the technical development for utilization of high speed train which will be run on the Korea Conventional Line and, finally, in order to propose the specification of signal system using for high speed and the scheme of establishment for the optimal signal system.

  • PDF

고전압 펄스형 전원을 사용한 질소레이저의 자체 선전리 효과 (Self-Preionization Effects of the Nitrogen Laser Using High Voltage Pulse Power Suply)

  • 이치원;안근옥;추한태;양준묵
    • 한국광학회지
    • /
    • 제1권2호
    • /
    • pp.169-177
    • /
    • 1990
  • 레이저관내에 별도의 전극을 설치하지 않고 레이저전극 자체만으로 선전리 효과를 얻을 수 있는 질소레이저를 연구하였다. 이를 위하여 펄스형 전원과 고속고전압 방전간극을 사용하는 레이저를 제작하였으며, 레이저관 양단에는 저항 또는 인덕터를 연결하여 이들이 레이저 동작특성에 미치는 영향과 자체 선전리 효과를 함께 연구하였다.

  • PDF

선박용 유압 조타 시스템의 구조적 안전성 평가 (Structural Safety Evaluation of Hydraulic Steering System for Ship)

  • 이문희;손인수;양창근
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.661-667
    • /
    • 2020
  • The optimal shape modeling of core parts through 3D modeling and structural analysis for the development of small and medium-sized ships. The goal is to improve the efficient structure of the hydraulic system for controlling the rudder among the core steering parts in small and medium-sized ships. Through 3D modeling and structural analysis, a new concept of tiller parts and a double-acting hydraulic cylinder control system were proposed and operational structural stability was evaluated. Structural analysis of the three different tiller designs that can be replaceable onto existing fishing vessels was conducted to derive the final shapes. The emphasis was placed on evaluating the structural stability of the key drive components, the tiller, pin, and cylinder rodin the maximum torque condition of the hydraulic cylinder.

Integrated Model for Assessment of Risks in Rail Tracks under Various Operating Conditions

  • G. Chattopadhyay;V. Reddy;Larsson, P-O
    • International Journal of Reliability and Applications
    • /
    • 제4권4호
    • /
    • pp.183-190
    • /
    • 2003
  • Rail breaks and derailments can cause a huge loss to rail players due to loss of service, revenue, property or even life. Maintenance has huge impact on reliability and safety of railroads. It is important to identify factors behind rail degradation and their risks associated with rail breaks and derailments. Development of mathematical models is essential for prediction and prevention of risks due to rail and wheel set damages, rail breaks and derailments. This paper addresses identification of hazard modes, estimation of probability of those hazards under operating, curve and environmental condition, probability of detection of potential hazards before happening and severity of those hazards for informed strategic decisions. Emphasis is put on optimal maintenance and operational decisions. Real life data is used for illustration.

  • PDF

비선형 하중 조건을 고려한 밸런스 샤프트 하우징의 내구평가 (Fatigue Analysis of Balance Shaft Housing Considering Non-linear Force Condition)

  • 이동원;김찬중;배철용;권성진;이봉현;김동철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.393-398
    • /
    • 2007
  • Balance shaft has a key role in reducing a engine vibration in a vehicle and widely applied for current models. Since balance shaft module consists many sub-component and each part had its own operational characteristics, some different analysis background should be integrated into one sub-part in balance shaft module and this is the main obstacles in making a design process. Moreover, the balancing shaft rotating in high speed and such condition requires large safety factors in a design process owing to a lot of unexpected problems with the overwhelming rotation. Balance shaft is the core-component generating the intended unbalance as well as canceling the unbalance force or moment by the engine module. So, the balance shaft should meet the high fatigue resistance not to mention of NVH performance. In this paper, a design strategy focused on balance shaft is developed to build a optimal model considering a engine vibration. Putting the unbalance mass distribution as main design parameter, some candidate model is verified with structural and fatigue analysis most appropriate model is proposed here.

  • PDF