• 제목/요약/키워드: Optimal Operational Condition

검색결과 74건 처리시간 0.026초

선로과부하해소를 고려한 최적부하간단에 관한 연구 (A Study on the Optimal Load Shedding Considering Alleviation of the Line Overload)

  • 송길영;이희영
    • 대한전기학회논문지
    • /
    • 제36권6호
    • /
    • pp.381-389
    • /
    • 1987
  • This paper presents a method for optimal load shedding in preserving a system security following abnormal condition as well as a sudden major supply outage. The method takes account of static characteristic of generators control and voltage and system frequency characteristic of loads. The optimization problem is solved by a gradient technique to get the maximal effect by the least quantity of load shedding considering line overloads as well as voltage disturbances and system frequency. The method is illustrated on a 8-bus system. It has been found that the use of the proposed algorithm for model systems alleviate the line overload more efficiently than the former method. It is believed that this method will be useful in security studies and operational planning.

  • PDF

스트립휜 히트싱크의 냉각특성 (Cooling Characteristics of a Strip Fin Heat Sink)

  • 박철우;김현우;장충선;유갑종
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.16-26
    • /
    • 2005
  • Air-cooled heat sinks are employed in many electronic cooling applications since they provide significant heat transfer enhancement and operational flexibility. Strip-shaped fin heat sink is of interest and needs to be investigated as general cooling products for more applicability. The purposes of this study are to evaluate heat sink performance without bypass flow condition and to determine optimal heat sink geometries. The results show that the decreasing rate of thermal resistance of a heat sink decreases with increasing inlet air velocity, and the increasing rate of pressure drop increases with increasing inlet air velocity, but is not affected by input power. The increasing rate of optimal longitudinal fin spacing is larger than that of transverse fin spacing. The strip fin heat sink tested in this study showed better cooling performance compared to that of other plate fin type.matism. 2004; 50(11): 3504-3515.

이중촉매 MEA의 성능평가에 관한 연구 (A Study on the Performance Evaluation of Double-Layered Catayst MEA)

  • 김홍건;강성수;곽이구;강영우
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.50-59
    • /
    • 2006
  • An experimental and numerical study is carried out to investigate the performance and the efficiency humidifying Membrane Electrolyte Assembly and having the double-layered catalyst in a fuel cell system which is taken into account the physical and thermal concept. Based on the principals of the problem, the equation of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used for the numerical calculation. A unit cell for $200cm^2$ MEA is assembled and measured for finding better operational situation. After finding the optimal condition, 10 cell stacked PEMFC is fabricated. For the performance evaluation, V-I and power curves are examined in detail by changing the condition of humidity, temperature, pressure, thickness of catalyst and oxidant. It is found that the power is maximized around 500W at 80A.

  • PDF

선회류와 나선형 그레인 형상을 이용한 하이브리드 로켓의 연소율 향상 (Enhancement of hybrid rocket regression rate by swirl flow and helical grain configuration)

  • 황영춘;이창진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.318-322
    • /
    • 2005
  • 본 연구에서는 스월 유동과 나사산 그레인 방법을 적용하여 연소율 증진에 대해 실험하였다. 스월 유동을 적용하기 위해 2개의 인젝터를 설계하였고, 2개의 나사산 그레인을 제작하였다. 인젝터와 그레인을 동시에 적용하여 실험하였다. 이 실험의 목적은 인젝터와 그레인에 따른 연소특성과 최적의 조합에 대해 연구하였다.

  • PDF

Optimization of photovoltaic thermal (PV/T) hybrid collectors by genetic algorithm in Iran's residential areas

  • Ehyaei, M.A.;Farshin, Behzad
    • Advances in Energy Research
    • /
    • 제5권1호
    • /
    • pp.31-55
    • /
    • 2017
  • In the present study, PV/T collector was modeled via analysis of governing equations and physics of the problem. Specifications of solar radiation were computed based on geographical characteristics of the location and the corresponding time. Temperature of the collector plate was calculated as a function of time using the energy equations and temperature behavior of the photovoltaic cell was incorporated in the model with the aid of curve fitting. Subsequently, operational range for reaching to maximal efficiency was studied using Genetic Algorithm (GA) technique. Optimization was performed by defining an objective function based on equivalent value of electrical and thermal energies. Optimal values for equipment components were determined. The optimal value of water flow rate was approximately 1 gallon per minute (gpm). The collector angle was around 50 degrees, respectively. By selecting the optimal values of parameters, efficiency of photovoltaic collector was improved about 17% at initial moments of collector operation. Efficiency increase was around 5% at steady condition. It was demonstrated that utilization of photovoltaic collector can improve efficiency of solar energy-based systems.

운용환경을 고려한 항공오일시험장비의 최적정비주기 설정 (Optimal Maintenance Cycle for Aviation Oil Testing Equipment under the Consideration of Operational Environment)

  • 김인석;정원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권3호
    • /
    • pp.224-230
    • /
    • 2016
  • Purpose: Military maintenance involves corrective and preventive actions carried out to keep a system in or restore it to a predetermined condition. This research develops an optimal maintenance cycle for aviation oil testing equipment with acceptable reliability level and minimum maintenance cost. Methods: The optimal maintenance policy in this research aims to satisfy the desired reliability level at the lowest cost. We assume that the failure process of equipment follows the power law non-homogeneous Poisson process model and the maintenance system is a minimal repair policy. Estimation and other statistical procedures (trend test and goodness of fit test) are given for this model. Results: With time varying failure rate, we developed reliability-based maintenance cost optimization model. This model will reduce the ownership cost through adopting a proactive reliability focused maintenance system. Conclusion: Based on the analysis, it is recommended to increase the current maintenance cycle by three times which is 0.5 year to 1.5 years. Because of the system's built-in self-checking features, it is not expected to have any problems of preventative maintenance cycle.

정재초음파를 이용한 입자제어 시스템의 유한요소해석 (Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave)

  • 조승현;박재하;안봉영;김기복
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.3-9
    • /
    • 2010
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

정재초음파를 이용한 입자제어 시스템의 유한요소해석 (Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave)

  • 조승현;박재하;안봉영;김기복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.565-570
    • /
    • 2009
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, an adaptive layer, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

  • PDF

운전방법에 따른 가정용 연료전지 시스템의 적용성 검토 (Study on Applicability of Household Fuel Cell System with Operating Methods)

  • 박대흠;차광석;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.139-144
    • /
    • 2014
  • A Fuel Cell is one of the solving to reduce greenhouse gases. Despite the high efficiency and environmental friendly of Household Fuel Cell System it has hardly obtained popularity mainly due to its high prices. In order to encourage use of the system prices and operational expenses need to become economical. In this study, optimization through simulation was conducted to find out the optimal operational condition. As a result of simulation the system is operated with DSS operation from 5 O'clock until 19 O'clock for 13 hours at the constant output of 0.4kW to maximize reduction of energy rate. Furthermore, instead of the domestic system with the rated output of 1kW, rated output of the system should be reduced to 0.4 - 0.6kW which can promote installation of household Fuel Cell System.

An integrated monitoring system for life-cycle management of wind turbines

  • Smarsly, Kay;Hartmann, Dietrich;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.209-233
    • /
    • 2013
  • With an annual growth rate of about 30%, wind energy systems, such as wind turbines, represent one of the fastest growing renewable energy technologies. Continuous structural health monitoring of wind turbines can help improving structural reliability and facilitating optimal decisions with respect to maintenance and operation at minimum associated life-cycle costs. This paper presents an integrated monitoring system that is designed to support structural assessment and life-cycle management of wind turbines. The monitoring system systematically integrates a wide variety of hardware and software modules, including sensors and computer systems for automated data acquisition, data analysis and data archival, a multiagent-based system for self-diagnosis of sensor malfunctions, a model updating and damage detection framework for structural assessment, and a management module for monitoring the structural condition and the operational efficiency of the wind turbine. The monitoring system has been installed on a 500 kW wind turbine located in Germany. Since its initial deployment in 2009, the system automatically collects and processes structural, environmental, and operational wind turbine data. The results demonstrate the potential of the proposed approach not only to ensure continuous safety of the structures, but also to enable cost-efficient maintenance and operation of wind turbines.