• Title/Summary/Keyword: Optimal Operational Condition

Search Result 74, Processing Time 0.026 seconds

Optimization and Characteristics of Removal Condition of Livestock Wastewater Using a Photocatalytic Process (광촉매공정 적용시 축산폐수의 처리특성 및 최적화)

  • Park, Jae-Hong
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.222-227
    • /
    • 2007
  • The photocatalytic degradation of livestock wastewater has been investigated over $TiO_2$ photocatalysts irradiated with a ultraviolet (UV) light. The effect of operational parameters, i.e., distance, reaction area, concentration of suspended solids(SS), and column diameter on the degradation of livestock wastewater has been performed in lab-scale. The optimal conditions for livestock wastewater were determined: distance was 3 cm (less than 7 cm), reaction area was $3.6\;m^2$, SS concentration was 40 mg/L (less than 300 mg/L) and column diameter was 5 mm (less than 10 mm). Under the optimal conditions, COD, color and coliform removal efficiencies were approximately 49%, 53% and 100%, respectively. Non-biodegradable COD removal efficiency increased with 57% using by photocatalysis process. Therefore, it is shown that photocatalysis has an effect on degradation of non-biodegradable organic matter.

  • PDF

Study on Optimization of Operation in household Fuel Cell System (가정용 연료전지 시스템의 요금 분석을 통한 최적 운전 방법 검토)

  • Park, Deaheum;Cha, Kwangseok;Jo, Hokyoo;Jung, Younguan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.598-603
    • /
    • 2012
  • Despite the high efficiency and eco-friendly of Household Fuel Cell System it has hardly obtained popularity mainly due to its high prices. In order to encourage use of the system prices and operational expenses need to become economical. In this study, optimization through simulation was conducted to find out the optimal operational condition. As a result of simulation the system is operated with DSS operation from 5 O'clock to 19 O'clock for 14 hours at the constant output of 0.4kW to maximize reduction of energy rate. this DSS operation condition can reduce 200,000 won of energy rates in 35 pyoung apartment for a year. And, we can know that starting time of DSS operation don't effect to energy rates through the simulation. Furthermore, the household fuel cell system with the rated output of 1kW should be reduced to 0.4 - 0.6kW which can promote installation of household Fuel Cell System. Now, the household fuel cell system don't have been used widely due to economical efficiency. but, in the near future, Fuel Cell will be used to household by decrease of LNG price caused by development of shale gas.

A Study on the Development of Flight Prediction Model and Rules for Military Aircraft Using Data Mining Techniques (데이터 마이닝 기법을 활용한 군용 항공기 비행 예측모형 및 비행규칙 도출 연구)

  • Yu, Kyoung Yul;Moon, Young Joo;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.177-195
    • /
    • 2022
  • Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

Analysis of Operating Characteristics in Tidal Power Generation According to Tide Level

  • Hong, Jeong-Jo;Oh, Young-sun
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Tidal power generation plays a critical role in reducing greenhouse gas emissions. It uses a tidal force generated by gravitational force between the moon, the earth, and the sun. The change of seawater height generates the tide-generating force, and the magnitude of the change is the tide level. The tide level change has the same period as the tide-generating force twice a day, every 29.5 days, every year, and every 18.6 years. Sihwa Lake Tidal Power Station is Korea's first tidal power plant that began commercial power generation in August 2011 and has been accumulating a large volume of data on electricity production, power generation sales, sluice displacement, and tide levels. The purpose of this paper was to analyze the impact of the inefficiency factors affecting production and the tidal level change on tidal power generation and their characteristics using Sihwa Lake Tidal Power's operational performance data. Throughout this paper we show that tidal power generating operation is accurately predicting the trends of magnitude of tidal force to be periodical for each day. determining the drop to initiate the water turbine generator factoring the constraints on the operation of Sihwa Lake, and reflecting the water discharge through the floodgate and water turbine during the standby mode in the power generation plan to be in the optimal condition until the initiation of the next power generation can maximize power generation.

A Study of Tilting Train Signal System for Conventional Rail Speed-Up

  • Han, Seong-Ho;Lee, Su-Gil;Ko, Tae-Hwan;Song, Yong-Soo;Han, Young-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1741-1744
    • /
    • 2003
  • This study is a kind of preliminary research in order to propose and suggest the plan of performance improvement for the speed-up through the examination of operational condition on the field for signal system facility on the conventional railway, in order to obtain the elemental technology from the technical development for utilization of high speed train which will be run on the Korea Conventional Line and, finally, in order to propose the specification of signal system using for high speed and the scheme of establishment for the optimal signal system.

  • PDF

Self-Preionization Effects of the Nitrogen Laser Using High Voltage Pulse Power Suply (고전압 펄스형 전원을 사용한 질소레이저의 자체 선전리 효과)

  • 이치원;안근옥;추한태;양준묵
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.169-177
    • /
    • 1990
  • We have constructed the laser system which was consisted of a high voltage pulse poner supply, a rapid high voltage spark gap and the Blumlein transmission line circuit of the multiple parallel plate capacitor type, and have studied the self-preionization effect from this laser system without additional modifications. The value of inductive or resistive loading of the laser oscillator seems to have a significant effect on the preionization. The optimal operational condition of this laser system was obtained at the inductive loading of L = I mtl across the laser tube with the spark gap distance of 6.0 mm. nitrogen pressure of 50 torr, when repetition rate was 70 Hz. Stability was found to be better than 2.0Yo and EIP was 867 V/cm.torr.

  • PDF

Structural Safety Evaluation of Hydraulic Steering System for Ship (선박용 유압 조타 시스템의 구조적 안전성 평가)

  • Lee, Moonhee;Son, Insoo;Yang, Changgun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.661-667
    • /
    • 2020
  • The optimal shape modeling of core parts through 3D modeling and structural analysis for the development of small and medium-sized ships. The goal is to improve the efficient structure of the hydraulic system for controlling the rudder among the core steering parts in small and medium-sized ships. Through 3D modeling and structural analysis, a new concept of tiller parts and a double-acting hydraulic cylinder control system were proposed and operational structural stability was evaluated. Structural analysis of the three different tiller designs that can be replaceable onto existing fishing vessels was conducted to derive the final shapes. The emphasis was placed on evaluating the structural stability of the key drive components, the tiller, pin, and cylinder rodin the maximum torque condition of the hydraulic cylinder.

Integrated Model for Assessment of Risks in Rail Tracks under Various Operating Conditions

  • G. Chattopadhyay;V. Reddy;Larsson, P-O
    • International Journal of Reliability and Applications
    • /
    • v.4 no.4
    • /
    • pp.183-190
    • /
    • 2003
  • Rail breaks and derailments can cause a huge loss to rail players due to loss of service, revenue, property or even life. Maintenance has huge impact on reliability and safety of railroads. It is important to identify factors behind rail degradation and their risks associated with rail breaks and derailments. Development of mathematical models is essential for prediction and prevention of risks due to rail and wheel set damages, rail breaks and derailments. This paper addresses identification of hazard modes, estimation of probability of those hazards under operating, curve and environmental condition, probability of detection of potential hazards before happening and severity of those hazards for informed strategic decisions. Emphasis is put on optimal maintenance and operational decisions. Real life data is used for illustration.

  • PDF

Fatigue Analysis of Balance Shaft Housing Considering Non-linear Force Condition (비선형 하중 조건을 고려한 밸런스 샤프트 하우징의 내구평가)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Kwon, Sung-Jin;Lee, Bong-Hyun;Kim, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.393-398
    • /
    • 2007
  • Balance shaft has a key role in reducing a engine vibration in a vehicle and widely applied for current models. Since balance shaft module consists many sub-component and each part had its own operational characteristics, some different analysis background should be integrated into one sub-part in balance shaft module and this is the main obstacles in making a design process. Moreover, the balancing shaft rotating in high speed and such condition requires large safety factors in a design process owing to a lot of unexpected problems with the overwhelming rotation. Balance shaft is the core-component generating the intended unbalance as well as canceling the unbalance force or moment by the engine module. So, the balance shaft should meet the high fatigue resistance not to mention of NVH performance. In this paper, a design strategy focused on balance shaft is developed to build a optimal model considering a engine vibration. Putting the unbalance mass distribution as main design parameter, some candidate model is verified with structural and fatigue analysis most appropriate model is proposed here.

  • PDF