• Title/Summary/Keyword: Optimal Maintenance Policy

Search Result 114, Processing Time 0.02 seconds

Some New Results on Uncertain Age Replacement Policy

  • Zhang, Chunxiao;Guo, Congrong
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • Age replacement policy is a commonly policy in maintenance management of spare part. It means that a spare part is always replaced at failure or fixed time after its installation, whichever occurs first. An optimal age replacement policy of spare parts concerns with finding the optimal replacement time determined by minimizing the expected cost per unit time. The age of the part was generally assumed to be a random variable in the past literatures, but in many situations, there are few or even no observed data to estimate the probability distribution of part's lifetime. In order to solve this phenomenon, a new uncertain age replacement policy has been proposed recently, in which the age of the part was assumed to be an uncertain variable. This paper discusses the optimal age replacement policies by dealing with the parts' lifetimes as different distributed uncertain variables. Several results on the optimal age replacement time are provided when the lifetimes are described by the uncertain linear, zigzag and lognormal distributions.

Optimal Periodic Preventive Maintenance Schedule When Preventive Maintenance is Imperfect (예방보전이 불완전할 때 최적 주기적 예방보전 계획)

  • Kim, Dae-Kyung;Shin, Sang-Wook;Lim, Jae-Hak
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.4
    • /
    • pp.140-146
    • /
    • 2007
  • In this paper, we consider a periodic imperfect preventive maintenance(PM) policy in which the system's failure rate after each PM remains unchanged. The system undergoes only minimal repairs at failures between PMs. Exact mathematical formula of the expected cost rate per unit time is derived. Optimal number of PMs and optimal maintenance period are derived by minimizing the expected cost rate per unit time. A numerical example is provided to illustrate the proposed approach under Weibull lifetime distribution.

Optimal Periodic Replacement Policy Under Discrete Time Frame (이산 시간을 고려한 시스템의 교체와 수리 비용 최적화 연구)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • Systems such as database and socal network systems have been broadly used, and their unexpected failure, with great losses and sometimes a social confusion, has received attention in recent years. Therefore, it is an important issue to find optimal maintenance plans for such kind of systems from the points of system reliability and maintaining cost. However, it is difficult to maintain a system during its working cycle, since stopping works might incur users some troubles. From the above viewpoint, this paper discusses minimal repair maintenance policy with periodic replacement, while considering the random working cycles. The random working cycle and periodic replacement policies with minimal repair has been discussed in traditional literatures by usually analyzing cases for the nonstopping works. However, maintenance can be more conveniently done at discrete time and even during the working cycle in real applications. So, we propose that periodic replacement is planned at discrete times while considering the random working cycle, and moreover provide a model in which system, with a minimal repair at failures between replacements, is replaced at the minimum of discrete times KT and random cycles Y. The average cost rate model is used to determine the optimal number of periodic replacement.

Cost optimization for periodic PM policy

  • Jung, Ki-Mun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.73-78
    • /
    • 2005
  • This paper considers a preventive maintenance policy following the expiration of renewing warranty, Most preventive maintenance models assume that each PM costs a fixed predetermined amount regardless of the effectiveness of each PM. However, it seems more reasonable to assume that the PM cost depends on the degree of effectiveness of the PM activity. In this paper we consider a periodic preventive maintenance policy following the expiration of renewing warranty when the PM cost is an increasing function of the PM effect. The optimal number and period for the periodic PM policy with effect dependent cost that minimize the expected cost rate per unit time over an infinite time span are obtained.

  • PDF

Optimal Replacement Policy for a Repairable System with Combination Warranty (혼합보증이 있는 수리 가능한 시스템에 대한 최적의 교체정책)

  • 정기문
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.107-117
    • /
    • 2002
  • In this paper we present the optimal replacement policies following the expiration of combination warranty. We consider two types of combination warranty policies: renewing warranty and non-renewing warranty. The criterion used to determine the optimal replacement period is the expected cost rate per unit time from the user'perspective. The optimal maintenance period following the expiration of combination warranty is obtained. Some numerical examples are presented for illustrative purpose.

Machine Diagnosis and Maintenance Policy Generation Using Adaptive Decision Tree and Shortest Path Problem (적응형 의사결정 트리와 최단 경로법을 이용한 기계 진단 및 보전 정책 수립)

  • 백준걸
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.2
    • /
    • pp.33-49
    • /
    • 2002
  • CBM (Condition-Based Maintenance) has increasingly drawn attention in industry because of its many benefits. CBM Problem Is characterized as a state-dependent scheduling model that demands simultaneous maintenance actions, each for an attribute that influences on machine condition. This problem is very hard to solve within conventional Markov decision process framework. In this paper, we present an intelligent machine maintenance scheduler, for which a new incremental decision tree learning method as evolutionary system identification model and shortest path problem as schedule generation model are developed. Although our approach does not guarantee an optimal scheduling policy in mathematical viewpoint, we verified through simulation based experiment that the intelligent scheduler is capable of providing good scheduling policy that can be used in practice.

Maintenance Limit Renewal Policy for Inferiority System based on Opportunity Cost (기회비용을 고려한 열화시스템의 보전한계갱신정책)

  • 박상민;김연수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.233-242
    • /
    • 1994
  • This study deals with the derivative adverse minimum for inferiority system depends on continuose operating under infinite planning horizon. This planning will be accomplished by maintenance limit renewal policy in consideration of opportunity cost which affects system by failure during operation periods and expected cost under nomal operation states. By the results, we will be expected incresing total efficiency for the system by optimal renewal policy.

  • PDF

PM Policy with Random Maintenance Quality Following the Expiration of Non-Renewing Warranty (비재생보증이 종료된 이후의 확률적 보전효과를 갖는 예방보전정책)

  • Jung, Ki-Mun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • This paper develops the optimal periodic preventive maintenance policy following the expiration of non-renewing warranty. We assume that Wu and Clements-Croome's (2005) periodic PM model with random maintenance quality is utilized to maintain the system after the non-renewing warranty is expired. Given the cost structure to the user during the cycle of the product, we drive the expressions for the expected cost rate per unit time. Also, we obtain the optimal number and the optimal period by minimizing the expected cost rate per unit time. The numerical examples are presented for illustrative purpose.

Maintenance Policy Based on Cost and Downtime Following the Expiration of Combination Warranty (혼합보증이 종료된 이후의 비용과 비가동시간에 근거한 보전정책)

  • Jung, Ki-Mun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.909-923
    • /
    • 2008
  • This paper considers the replacement model and the preventive maintenance model following the expiration of combination warranty for a repairable system. If the system fails after the combination warranty is expired, then it is minimally repaired at each failure. The criterion used to determine the optimal replacement policy and the optimal preventive maintenance policy is the overall value function based on the expected cost rate per unit time and the expected downtime per unit time. The numerical examples are presented for illustrative purpose when the failure time follows a Weibull distribution.

Optimal Software Release Policy for Random Cost Model

  • Kim, Hee-Soo;Shin, Mi-Young;Park, Dong-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.673-682
    • /
    • 2005
  • In this paper, we generalize the software reliability growth model by assuming that the testing cost and maintenance cost are random and adopt the Bayesian approach to determine the optimal software release time. Numerical examples are provided to illustrate the Bayesian method for certain parametric models.