• 제목/요약/키워드: Optimal Joint Angle

검색결과 54건 처리시간 0.031초

Optimization of arc brazing process parameters for exhaust system parts using box-behnken design of experiment

  • Kim, Yong;Park, Pyeong-Won;Park, Ki-Young;Ryu, Jin-Chul
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.23-31
    • /
    • 2015
  • Stainless steel is used in automobile muffler and exhaust systems. However, in comparison with other steels it has a high thermal expansion rate and low thermal conductivity, and undergoes excessive thermal deformation after welding. To address this problem, we evaluated the use of arc brazing in place of welding for the processing of an exhaust system, and investigated the parameters that affect the joint characteristics. Muffler parts STS439 and hot-dipped Al coated steel were used as test specimens, and CuAl brazing wire was used as the filler metal for the cold metal transfer (CMT) welding machine, which is a low heat input arc welder. In addition, a Box-Behnken design of experiment was used, which is a response surface methodology. The main process parameters (current, speed, and torch angle) were used to determine the appropriate welding quality and the mechanical properties of the brazing part was evaluated at the optimal welding condition. The optimal processing condition for arc brazing was 135A current, 51cm/min speed and $74^{\circ}$ torch angle. The process was applied to an actual exhaust system muffler and the prototype was validated by thermal fatigue, thermal shock, and endurance limit tests.

임피던스 방식의 동작분석을 위한 최적전극 선정 (Optimal Electrode Displacement for Motion Analysis using Bio-impedance)

  • 송철규;변용훈;윤대영;이명권;김거식;송창훈;김경섭;김수찬;김덕원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2887-2890
    • /
    • 2003
  • This paper describes the possibility of analyzing gait pattern from the variation of the lower leg electrical impedance. This impedance is measured by the four-electrode method. Two current electrodes are applied to the thigh, knee, and foot, and two potential electrodes are applied to the lateral, medial, and posterior position of lower leg. The correlation coefficients of the joint angle and the impedance change from human leg movement was obtained using electrogoniometer and 4ch impedance measurement system developed in this study. We found the optimal electrode position for ankle, knee and hipjoint movements based on high correlation coefficient, least interference, and maximum magnitude of impedance change. The correlation coefficients of the ankle, knee, and the hip movements -0.87, 0.957 and 0.80. respectively. From such features of the lower leg impedance, it has been made clear that different movement patterns exhibit different impedance patterns and impedance level. This system showed possibility that lower leg movement could be easily measured by impedance measurement system with a few skin-electrodes.

  • PDF

내시경 수술 도구의 수동 조작 메커니즘 및 이의 최적 형상 설계 (Hand-controller Mechanism and its Optimal Design Method for Manually Controlled Endoscopic Surgical Instrument)

  • 이호열;송찬호;손재범
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.203-210
    • /
    • 2019
  • This paper proposes a hand-controller mechanism for manually controlled endoscopic surgical instruments. A wire-driven mechanism is typically adapted for endoscopic surgical tools because motors cannot be embedded to the joints due to the size limitation. The wire-driven mechanism requires length control of wires that are pulled and released according to the desired joint angle. It is difficult for the operator to control individual wire lengths intuitively. The hand-controller mechanism should be able to control the wires easily without complex processes. For this purpose, we propose a mechanism that can control the wire lengths with a simple mechanical structure and its optimal design method using genetic algorithm. We show the simulation and experimental results to confirm the proposed mechanism and design methods are useful for the manually controlled endoscopic surgical instrument.

Effect of flexion degrees in elbow joint on muscle activation of the extensor carpi radialis and biceps brachii muscles in healthy young adults

  • Kim, Gap-Cheol;Hwang, Sujin
    • Physical Therapy Rehabilitation Science
    • /
    • 제5권3호
    • /
    • pp.120-124
    • /
    • 2016
  • Objective: Chronic lateral epicondylitis is a condition which becomes sore and tender on the lateral side of the elbow joint damaged from overuse and repetitive use of the extensor muscles of the forearm. The purpose of this study was to investigate the effects of flexion degrees in the elbow joint on extensor carpi radialis longus and brevis and biceps brachii muscles in individuals with healthy young adults. The main purpose of this study was to suggest the feasibility of optimal elbow angle during therapeutic eccentric exercise with resistance for strengthening of wrist extensors. Design: Cross-sectional study. Methods: Thirty health young adults (male 15, female 15) participated in this study. This study measured muscle activation in four different conditions of elbow flexion, $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, and $90^{\circ}$ during eccentric exercise with weight loading in wrist extensors, extensor carpi radialis longus and brevis and biceps brachii muscles using surface electromyography. Results: The muscle activation of extensor carpi radialis showed a negative relationship with the degrees of elbow joint flexion. With increasing elbow flexion angles, the ECRL muscle activation amount was significantly lower (p<0.05). In contrast, the muscle activation of the ECRB muscle activation amount was significanlty higher (p<0.05). Conclusions: This study suggests that the eccentric exercise of wrist extension with selected activation of wrist extensor muscles according to elbow flexion positions, and suggests that the extensor carpi radialis longus and brevis will need to be strengthened for preventing and treating chronic lateral epicondylitis regardless of degrees of elbow joint flexion.

國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性 (Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates)

  • 오세규;남기우
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

이족 로봇의 계단 보행에서 Real-Coded Genetic Algorithm 의 융합 기술의 사용 (The usage of convergency technology for ROGA algorithm application on step walking of biped robot)

  • 이정익
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.175-182
    • /
    • 2020
  • 계단 보행 시 로봇의 최적 궤도 계산은 유전자 알고리즘과 계산 토크 컨트롤러를 사용하여 수행되었다. 첫째, 생식, 교배, 돌연변이로 이루어진 실시간 유전 알고리즘 (RCGA)을 사용하여 총 에너지 효율이 최소화되었다. 보폭의 시작과 끝, 그리고 조인트, 각도, 각속도 위치 어셈블리 관련 재현성 조건은 선형 제약이다. 다음은 고르지 못한 제약은 코너 스윙 다리와 계단의 외부와의 충돌을 막기 위한 조건, 운동 학적 특이성을 막기 위한 무릎 관절의 조건 및 진행 방향의 안전은 보장되지 않음 이란 조건을 따른다. 마지막으로, 각 관절의 각도 궤도는 염색체를 근사 계수를 가지는 4차 다항식에 의해 정의된다. 이것은 보통 도보를 의미한다. 이 연구에서는 최적의 궤도의 에너지 효율을 7개의 링크로 구성된 7자유도의 2족 로봇을 통한 컴퓨터 시뮬레이션을 통해 분석했다.

수중유영로봇 Crabster의 최적 유영 구현 (Optimal Swimming Motion for Underwater Robot, Crabster)

  • 김대현;이지홍
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.284-291
    • /
    • 2012
  • Recently, development of underwater robot has actively been in progress in the world as ROV(Remotely Operator Vehicle) and AUV(Autonomous Unmmanded Vehicle) style. But KIOST(Korea Institute of Ocean Science and Technology), beginning in 2010, launched the R&D project to develop the robot, dubbed CRABSTER(Crab + (Lob)ster) in a bid to enhance the safety and efficiency of resource exploration. CRABSTER has been designed to be able to walk and swim with its own legs without screws. Among many research subjects regarding CRABSTER, optimal swimming patterns are handled in this paper. In previous studies, drag forces during one period with different values for angle of each joint were derived. However kinematics of real-robot and fluid-dynamics are not considered. We conducted simulations with an optimization algorithm for swimming by considering simplified fluid dynamics in this paper. Drag-coefficients applied to the simulation were approximated values calculated by CFD(Computational Fluid Dynamics : Tecplot 360, ANSYS). In addition, optimized swimming patterns were applied to a real robot. The experiments with the real robot were conducted in circumstances in the water. As a result, when the experiments were carried out in the water, a regular pattern of drag force output came out depending on the movement of the robot. We confirmed the fact that the drag forces from the simulation and the experiment has a high similarity.

Changes in Muscle Activity of the Serratus Anterior According to Surface Tilt Angle During Push-up Plus Exercise in Subjects With Winged Scapula

  • Gu, Qian;Kim, Tae-ho;Chun, Jung-genn
    • 한국전문물리치료학회지
    • /
    • 제26권4호
    • /
    • pp.29-34
    • /
    • 2019
  • Background: The serratus anterior is one of the most important muscle for maintaining good scapular alignment in the shoulder joint. The pectoralis major and upper trapezius may also compensate for weak serratus anterior muscles. The push-up plus exercise has been identified as the optimal exercise for maximum activation of the serratus anterior. Objects: The purpose of this study was to examine differences in surface electromyography (EMG) activity of upper trapezius, pectoralis major, and serratus anterior muscles during push-up plus exercises on variously angled surfaces in subjects with winged scapula. Methods: Sixteen subjects with winged scapula (male=5, female=11) volunteered for this study. The subjects performed push-up plus exercise on four different tilt angles, namely $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, and $90^{\circ}$. EMG activities in the serratus anterior, upper trapezius, and pectoralis major muscles during performance of push-up plus exercise were measured in all subjects. Data were processed from repeated measures one-way analysis of variance. Results: There was significant difference in the muscle activity of the serratus anterior on the different surface angles (p<.05). The results of the post-hoc analysis showed significantly greater serratus anterior muscle activity on a surface at a $0^{\circ}$ angle than at others tilt angles (p<.05). There was also significant difference in the ratio of serratus anterior to upper trapezius and serratus anterior to pectoralis major across the four surfaces (p<.05), and post-hoc analysis showed significantly greater values on the $0^{\circ}$ surface than on other tilts (p<.05). Conclusion: This study found that performing push-up plus exercises on a flat surface with $0^{\circ}$ and $30^{\circ}$ tilt angle achieves high activation of the serratus anterior muscle for selective strengthening. It can also take into account the sequential application, which is first performed at a $30^{\circ}$ and at a $0^{\circ}$ tilt angle for and effective but not excessive muscle activation.

초소형 튜브와 튜브판의 링 프로젝션 용접 공정개발 및 강도 평가 (Development and Strength Evaluation of Ring Projection Welding Process of the Microminiature Tube and Tubesheet)

  • 윤영현;김현준;김창수;조상명
    • Journal of Welding and Joining
    • /
    • 제27권2호
    • /
    • pp.63-68
    • /
    • 2009
  • Microminiature heat exchanger has been applied to the gas turbine in order to increase energy efficiency. During the production of microminiature heat exchanger, however, it is very difficult to weld tube to tubesheet. In this study, therefore, welding process of resistance ring projection was used, and weld tensile tests were performed. Sound weld joint was obtained as a result of applying resistance ring projection welding to microminiature heat exchanger to tubesheet. Cold weld occurred at under 1600A. Even though tensile strength was increased with increasing current, splash occurred and tensile strength decreased at 2000A due to the excessive current. Therefore it was determine that the optimal current is 1900A. As result of tensile tests based on ASME code for tube to tubesheet weldment, rupture position was weldment due to Fs(Fractured section) of nugget, which was smaller than tube thickness (t), and it was proven as a partial strength welding because of the average joint efficiency fr = 0.90.

전방십자인대 수술자의 재활트레이닝 경과에 따른 운동역학적 분석 (A Biomechanical Analysis According to Passage of Rehabilitation Training Program of ACL Patients)

  • 진영완
    • 한국운동역학회지
    • /
    • 제23권3호
    • /
    • pp.235-243
    • /
    • 2013
  • The purpose of this study was to analyse scientific according to period of rehabilitation training of ACL patients. ACL patients seven subjects participated in this study. Gait (1.58 m/sec) analysis was performed by using a 3-D Cinematography, a Zebris system and a electromyograph system. The data were analyzed by paired t-test. The joint angles were recorded from the ankle, knee, hip joints. Peak max dorsi-flexion and peak max plantar-flexion identified significant differences (p<0.05). Another angles were no significant difference. Vertical force (Fz) and max pressure variables improved 6 month RTP better than 3 month RTP. EMG were collected from 4 muscles (rectus femoris, biceps femoris, gastrocnemius, tibialis anterior) with surface electrides in gait system. EMG signals were rectified and smoothed data. EMG signas were no significant difference but they also improved 6 month RTP better than 3 month RTP. More research is necessary to determine exactly what constitutes optimal rehabilitation training period for ACL patients.