• Title/Summary/Keyword: Optimal Jet Condition

Search Result 29, Processing Time 0.025 seconds

Optimal Conditions for Maximizing Altitude of Sounding Rocket (사운딩로켓의 고도 극대화를 위한 최적조건)

  • Park, Aeny;Lee, Sang-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.144-149
    • /
    • 2011
  • A study to determine the optimal jet conditions for maximizing altitude of the sounding rocket is conducted. The behavior of a simplified linear momentum equation including aerodynamic drag is investigated. The analytic solutions are obtained and compared with numerical solutions. It is shown that there are the optimal jet conditions for maximizing altitude of a sounding rocket according to the rocket mass ratio.

  • PDF

Optimal Conditions for Maximizing Altitude of Sounding Rocket (사운딩로켓의 고도 극대화를 위한 최적조건)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • A study to determine the optimal jet conditions for maximizing altitude of the sounding rocket is conducted. The behavior of a simplified one-dimensional momentum equation including aerodynamic drag is investigated. The case where an analytic solution exists and the case where the mass flow rate is constant are calculated. The solutions are compared with numerical solutions. It is shown that there are the optimal jet conditions for maximizing altitude of a sounding rocket and the optimal condition is a function of the rocket mass ratio.

A Study on Smoke Control Characteristic by the Effect off Jet Fan Installation Distance (제트팬 이격거리에 따른 연기제어특성에 관한 연구)

  • Kim, Jong-Yoon;Jeon, Yong-Han;Seo, Tae-Beom;Yoo, Ji-Oh;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.16-23
    • /
    • 2008
  • In this research, the visualization experiment for a scaling tunnel was conducted to establish the optimum fire protection system in tunnel fires. In order to find the optimal operating condition of jet fan with the fire, the characteristics of smoke propagation was considered to find the optimal operating condition of jet fan at the time of tunnel fire, the concentration of smoke was measured experimentally for various jet fan position and it's operating condition. As a result, when jet fan in the vicinity of fire operates at the upstream, the back-layering of the smoke should be considered with separation distance from the fire source. The distance between the jet fan and the fire should be longer than 50 m. On the other hand, when the vicinity jet fan operates at the downstream, the back-layering of smoke does not occur, but stratification is not maintained because the smoke dispersion occurs at the downstream due to the operation of the jet fan.

Design Optimization of an Impingement Jet on Concave Surface for Enhancement of Heat Transfer Performance (곡면에서의 열전달성능 향상을 위한 충돌제트의 최적설계)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.100-103
    • /
    • 2011
  • In the present work, a numerical study of fluid flow and heat transfer on the concave surface with impinging jet has been performed by solving three-dimensional Reynods-averaged Naver-Stokes(RANS) equations. The constant temperature condition was applied to the concave impingement surface. The inclination angle of jet nozzle and the distance between jet nozzles are chosen as design variables under equivalent mass flow rate of working fluid into cooling channel, and area averaged Nusselt number on concave impingement surface is set as the objective function. Thirteen training points are obtained by Latin Hypercube sampling method, and the PEA model is constructed by using the objective function values at the trainging points. And, the sequential quadratic programming is used to search for the optimal paint from the PBA model. Through the optimization, the optimal shape shows improved heat transfer rate as compared to the reference geometry.

  • PDF

Flow Characteristics of a Jet Pump by the Angle Variation of a Suction Pipe (분사펌프의 흡입관 각도 변화에 따른 유동특성)

  • Kim, Noh Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • In this study, STAR-CD-based CFD techniques was used to analyze velocity distribution and pressure distribution according to the variation of angels at $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$ a suction pipe when inlet velocity condition is 1 m/s. SIMPLE maritime law used for analytical algorithm and the results of CFD analysis evaluated by particle image velocimetry (PIV). The results of CFD analysis in this study have revealed that the optimal angle of a suction pipe for a jet pump is $90^{\circ}$ and the PIV test has showed the same results. Therefore, it is thought that when CFD is used to analyze the flow characteristics of a jet pump it would be possible to produce optimal designs of its devices.

Characteristic Equation to Determine Optimal Ejection Conditions of Sounding Rocket: Analytic Solution Cases (사운딩로켓의 최적 분사조건 결정을 위한 특성방정식: 해석적 해의 경우)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.26-34
    • /
    • 2013
  • An analytic approach to determine the optimal conditions for maximizing altitude of a sounding rocket is suggested. The behavior of the one-dimensional momentum equation including thrust, gravitational force and aerodynamic drag force is investigated. For the case where an analytic solution exists, a characteristic equation for determining optimal condition for maximizing altitude at the burn-out state and that for maximizing altitude at the stationary state are developed and verified with numerical experiments.

Performance of Refrigerated Display Cabinets in accordance with the Supply Air Jet Condition (급기제트 조건에 따른 냉동용 전시케이스의 성능)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.80-86
    • /
    • 2011
  • Vertical open display cabinets are widely used in shopping mall, supermarkets, retail stores. Maintaining the temperature of foods in the display cabinet is vitally important to retailers to ensure optimal food quality and safety. The purpose of this study is to reduce the infiltration of air and heat loss from ambient space to display cabinet. The three-dimensional Computational Fluid Dynamics(CFD) simulation is used for the analysis of air flow patterns and temperature distribution in refrigerated display cabinets. Under several operating conditions which vary both the inner and outer jet velocities in the range from 0.3 to 1.1 m/s, simulations were carried out. This paper presents a performance of display cabinets with single jet and double jet. The energy consumption due to thermal entrainment ratio is plotted with varying Re. It was found that the double jet system is better than single jet system in terms of temperature distribution and energy saving.

Spray Characteristics according to Fluid Properties and Electric Parameters of Electrospray (정전분무의 유체 물성치와 정전 매개변수 따른 분무특성)

  • Kim, JiYeop;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2020
  • Electrospray is used in various industries because it can produce continuous and uniform droplets. However, it is difficult to find optimal spraying condition due to lack of data in various conditions. In this study, various conditions were divided into electric parameters and fluid property. The electric parameters set Nozzle to Substrate(NTS), nozzle diameters and the fluid property set viscosity and conductivity as conditions. In this study, it observes spray patterns, Sauter Mean Diameter(SMD) according to conditions. As a result, fluid properties had a greater effect on the cone-Jet mode than on the nozzle diameter, NTS, and flowrate. All of solutions have Stable cone-jet mode at voltage of 8.5 kV, NTS of 20 mm and nozzle diameter of 0.2 mm. SMD has 27% different depending on viscosity and conductivity. The increased flowrate and viscosity are rising break-up length and thickening jet also jet is thinned by increased conductivity. Experiments have confirmed that the jet is thickened by increased flowrate and viscosity, and that the jet is thinned by conductivity.

Application of reinforcement learning to fire suppression system of an autonomous ship in irregular waves

  • Lee, Eun-Joo;Ruy, Won-Sun;Seo, Jeonghwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.910-917
    • /
    • 2020
  • In fire suppression, continuous delivery of water or foam to the fire source is essential. The present study concerns fire suppression in a ship under sea condition, by introducing reinforcement learning technique to aiming of fire extinguishing nozzle, which works in a ship compartment with six degrees of freedom movement by irregular waves. The physical modeling of the water jet and compartment motion was provided using Unity 3D engine. In the reinforcement learning, the change of the nozzle angle during the scenario was set as the action, while the reward is proportional to the ratio of the water particle delivered to the fire source area. The optimal control of nozzle aiming for continuous delivery of water jet could be derived. Various algorithms of reinforcement learning were tested to select the optimal one, the proximal policy optimization.

Reforming of Hydrocarbon Fuel Using Water Jet Plasma (Water Jet 플라즈마를 이용한 탄화수소 연료 개질)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to develop water jet plasma reactor and investigate the optimal condition of the syngas production by reforming of hydrocarbon fuel. Fuel used was propane and plasma was generated by arc discharge on water jet surface. Discharge slipping over the water surface has a number of advantages such as a source of short-wave and UV radiation, and it can be used for biological and chemical purification of water. Parametric screening studies were conducted, in which there were the variations of power ($0.18{\sim}0.74$ kW), water jet flow rate($38.4{\sim}65.6$ mL/min), electrode gap($5{\sim}15$ mm) and treatment time($2{\sim}20$ min). When the variations were 0.4 kW, 53.9 mL/min, 10 mm and 20 min respectively, result of maximum $H_2$ concentration was 61.6%, intermediates concentration were 6.1% and propane conversion rate was 99.8%.