• Title/Summary/Keyword: Optimal Design Alternative

Search Result 216, Processing Time 0.024 seconds

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

Modeling and Characteristics of Switched Reluctance Motor (SRM) through Machine Language (기계언어를 통한 Switched Reluctance Motor(SRM)의 Modeling과 특성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.117-122
    • /
    • 2021
  • Permanent magnet synchronous motors can secure high power density and efficiency, but have problems in that the materials required for manufacturing are expensive and design is somewhat more difficult than induction motors. Therefore, it is necessary to develop an optimal motor that considers both efficiency and maintenance convenience and related control research. In addition, driving by a practical motor leads to a request to increase the highest efficiency in a narrow rated range, an increase in average efficiency in the entire electric driving range, and an increase in average output. Due to this movement, a reluctance motor that does not require a permanent magnet is being considered as an alternative. In this paper, in line with the issues of the times that require the development of future technology that can replace rare earth permanent magnet motors and the technological preemption of rare earth reduction motors and rare earth motors, switched reluctance motors without permanent magnet For motor, SRM), modeling through machine language (C language) and the characteristics of SRM accordingly are to be studied.

A Study on the Demand Prediction Model for Repair Parts of Automotive After-sales Service Center Using LSTM Artificial Neural Network (LSTM 인공신경망을 이용한 자동차 A/S센터 수리 부품 수요 예측 모델 연구)

  • Jung, Dong Kun;Park, Young Sik
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.197-220
    • /
    • 2022
  • Purpose The purpose of this study is to identifies the demand pattern categorization of repair parts of Automotive After-sales Service(A/S) and proposes a demand prediction model for Auto repair parts using Long Short-Term Memory (LSTM) of artificial neural networks (ANN). The optimal parts inventory quantity prediction model is implemented by applying daily, weekly, and monthly the parts demand data to the LSTM model for the Lumpy demand which is irregularly in a specific period among repair parts of the Automotive A/S service. Design/methodology/approach This study classified the four demand pattern categorization with 2 years demand time-series data of repair parts according to the Average demand interval(ADI) and coefficient of variation (CV2) of demand size. Of the 16,295 parts in the A/S service shop studied, 96.5% had a Lumpy demand pattern that large quantities occurred at a specific period. lumpy demand pattern's repair parts in the last three years is predicted by applying them to the LSTM for daily, weekly, and monthly time-series data. as the model prediction performance evaluation index, MAPE, RMSE, and RMSLE that can measure the error between the predicted value and the actual value were used. Findings As a result of this study, Daily time-series data were excellently predicted as indicators with the lowest MAPE, RMSE, and RMSLE values, followed by Weekly and Monthly time-series data. This is due to the decrease in training data for Weekly and Monthly. even if the demand period is extended to get the training data, the prediction performance is still low due to the discontinuation of current vehicle models and the use of alternative parts that they are contributed to no more demand. Therefore, sufficient training data is important, but the selection of the prediction demand period is also a critical factor.

Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building (군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가)

  • Byonghu Sohn;Kyung Joo Cho;Dong Woo Cho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.4
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

Accuracy of Thoracolumbar Spine K-Wire Placement in Toy, Small and Medium Breed Dogs: Novice Surgeons with 3D Printed Patient-Specific Guide versus an Experienced Surgeon with Freehand Techniques

  • Hwa-Joeng Shin;Hae-Beom Lee;Yoon-Ho Roh
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.294-301
    • /
    • 2022
  • Three-dimensional (3D) printing technique has been widely used for accurate screw and pin placement in orthopedic surgery and neurosurgery. However, there are few reports comparing the accuracy between the patient-specific guides and freehand Kirschner wire (K-wire) placement in toy, small and medium breed dogs. This study aimed to assess the accuracy of 3D printed patient-specific guides (PSGs) in pin insertion in the thoracolumbar vertebrae of toy breed dogs and compare the outcomes between novice and experienced surgeons. The experiment was conducted on the thoracolumbar vertebrae of 21 euthanized toy breed dogs (median weight, 5.95 kg). The optimal insertion angle placement was determined and patient-specific guides for K-wire insertion were designed and 3D printed using computed tomography (CT) and a 3D computer-aided design program of three vertebrae (Thoracic 12-Lumbar 1). K-wire tracts were made by experienced and novice surgeons and compared to assess the accuracy based on postoperative CT. Based on postoperative CT, in the experienced group, 61 out of 63 pins (96.8%) were fully contained inside the vertebral body and lamina, whereas two pins (3.2%) had perforated the vertebral canal (grade 3, 2-4 mm breach). However, all the pins in the novice group were fully contained. The use of 3D printed PSGs for pin insertion in the thoracolumbar region is an accurate and safe alternative to freehand screw placement by novice surgeons in toy, small and medium breed dogs. Operations with 3D printed PSGs allow novice surgeons to achieve better or similar outcomes in accurate placement of pin/screws in vertebrae.

Study on Cement-based Grout for Closed-loop Vertical Grout Heat Exchanger (수직 밀폐형 지중열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Choi, Hang-Seok;Kang, Shin-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.107-115
    • /
    • 2010
  • In this paper, the applicability of cement grout bas been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which was exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout was evaluated by performing equivalent hydraulic conductivity tests, on the specimen. in which a pipe locates at the center of the specimen.

A study of Spatial Multi-Criteria Decision Making for optimal flood defense measures considering regional characteristic (지역특성을 고려한 홍수방어대안 제시를 위한 공간 다기준의사결정 기법 적용 방안 연구)

  • Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.301-311
    • /
    • 2018
  • Recently, the flood inundation caused by heavy rainfall in urban area is increasing due to global warming. The variability of climate change is described in the IPCC 5th report (2014). The precipitation pattern and hydrological system is varied by climate change. Since the heavy rainfall surpassed the design capacity of the pipeline, it caused great damage in metropolitan cities such as Seoul and Busan. Inundation in urban area is primarily caused by insufficient sewer capacity and surplus overflow of river. Inundation in urban area with concentrated population is more dangerous than rural and mountains areas, because it is accompanied by human casualties as well as socio-economic damage to recover destruction of roads, brides and underground spaces. In addition, various factors such as an increase in impervious area, a short time of concentration to outlet, and a shortage of sewer capacity's lack increase flooding damage. In this study, flood inundation analysis was conducted for vulnerable areas using XP-SWMM. Also, three structural flood prevention measures such as drainage pipeline construction, detention reservoir construction, and flood pumping station construction are applied as flood damage prevention alternatives. The flood data for each alternative were extracted by dividing the basin by grid. The Spatial Compromise Programming are applied using flood assessment criteria, such as maximum inundation depth, inundation time, and construction cost. The purpose of this study is to reflect the preference of alternatives according to geographical condition even in the same watershed and to select flood defense alternative considering regional characteristics.

Conceptual Design of Automatic Control Algorithm for VMSs (VMS 자동제어 알고리즘 설계)

  • 박은미
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.177-183
    • /
    • 2002
  • Current state-of-the-art of VMS control is based upon simple knowledge-based inference engine with message set and each message's priority. And R&Ds of the VMS control are focused on the accurate detection and estimation of traffic condition of the subject roadways. However VMS display itself cannot achieve a desirable traffic allocation among alternative routes in the network In this context, VMS display strategy is the most crucial part in the VMS control. VMS itself has several limitations in its nature. It is generally known that VMS causes overreaction and concentration problems, which may be more serious in urban network than highway network because diversion should be more easily made in urban network. A feedback control algorithm is proposed in this paper to address the above-mentioned issues. It is generally true that feedback control approach requires low computational effort and is less sensitive to models inaccuracy and disturbance uncertainties. Major features of the proposed algorithm are as follows: Firstly, a regulator is designed to attain system optimal traffic allocation among alternative routes for each VMS in the network. Secondly, strategic messages should be prepared to realize the desirable traffic allocation, that is, output of the above regulator. VMS display strategy module is designed in this context. To evaluate Probable control benefit and to detect logical errors of the Proposed feedback algorithm, a offline simulation test is performed using real network in Daejon, Korea.

Optimal Design of a Coil for Improved Heating Efficiency of Electric Induction Boiler (전기유도보일러의 발열효율개선을 위한 권선최적설계)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.476-482
    • /
    • 2019
  • Regulatory protocols such as the Convention on Climate Change and the regulation of greenhouse gas emissions act as catalysts for the development of high-efficiency energy equipment and the efficient use of energy. Among the fields where energy consumption is high, the electric heating equipment is not efficient. The electric boiler mainly uses a method of circulating water by contacting the heater. When the existing electric boiler is used, the water minerals are contacted with the high-temperature heater to be carbonized and adsorbed, thereby promoting the corrosion of the heater and lowering the efficiency of the heater. For this reason, an electric induction boiler, which has high energy efficiency and is applied to an induction heating system that can uniformly heat the object to be heated rather than conduction or convection heating, is in the limelight. This method induces a boiler pipe And it is recognized as an alternative that can solve the problem that occurs when heating is performed by direct heating. Despite the fact that research on induction heating has been conducted for a relatively long period of time, there have been few studies on the electrothermal technology using induction heating. Therefore, in this paper, to improve the heat efficiency of electric induction boiler, the influence of the cross sectional area, number of windings and winding layers is analyzed by finite element method through parametric study method. The method of finding the design point which maximizes the total loss is proposed by the alternating winding design method which can maximize the heat generation by analyzing copper and iron losses.