• Title/Summary/Keyword: Optimal Deployment

Search Result 168, Processing Time 0.023 seconds

Optimal deployment strategy of patriot missile (패트리어트 (patriot) 미사일의 최적 배치)

  • 김영휘;김성인;오원민
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.29-37
    • /
    • 1994
  • It is reported that north Korea has already developed 1,500 to 2,000-km-range Scud missile. As a defensive strategy against Scud attack on military and civilian facilities the military authorities are considering deployment of Patriot missile. This paper deals with its optimal deployment strategy. In this problem a Patriot missile which has multiple-facility responsibility may be able to protect each of its assigned facilities only with a certain probability, not absolute protection, and it may not be adequate to have only a single missile protect a facility, either because of its operational reliability or because of its limited availability at any given point in time. We formulate this problem into the probabilistic partial set covering model developed by Sherali and Kim. The applicability, verification and validation of the model are tested via an abbreviated case study.

Optimal deployment of bistatic sonar using particle swarm optimization algorithm (입자 군집 최적화 알고리즘을 이용한 양상태 소나 최적 배치 연구)

  • Ji Seop Kim;Dae Hyeok Lee;Wonjun Yang;Young Seung Kim;Jee Woong Choi;Hyuckjong Kwon;Jungyong Park;Su-Uk Son;Ho Seuk Bae;Joung-Soo Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.437-444
    • /
    • 2024
  • Bistatic sonar performance varies significantly depending on the ocean environment, the location (latitude, longitude) and water depth of the source and receiver. Therefore, research on optimal deployment of bistatic sonar considering ocean environment is necessary. In this study, we suggest an algorithm to optimize the location and water depth of source and receiver when operating monostatic and bistatic sonar on two spatially separated surface ships in the Ulleung Basin in the East Sea. A particle swarm optimization algorithm was used to search the location and water depth of the source and receiver to maximize the detectable area within the search area. As a result of performing bistatic sonar deployment using the algorithm proposed in this study, the detectable area increased as the number of model iterations increased. Additionally, it was confirmed that the source and receiver on the two surface ships converged to the optimal location and water depth.

Evaluation of the Economic Values and Optimal Deployment Timing of R&D Investment in New and Renewable Energy Using Real Option Approach (실물옵션을 이용한 신재생에너지 R&D의 경제적 가치 및 최적 적용시점 평가)

  • Kim, Kyung-Taek;Lee, Deok-Joo;Park, Sung-Joon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.2
    • /
    • pp.144-156
    • /
    • 2012
  • In recent years, advanced countries in energy sector are emphasizing the importance of the development and deployment of renewable energy to cope with the global environmental crisis such as depletion of fossil energy, climate convention to control emissions of greenhouse gases. In this paper, we evaluate the economic value of the investment in new and renewable energy R&D in Korea and optimal deployment timing of new and renewable energy by using the real option approach. The real option model adopted in this paper assumes that a decision maker has a compound option to abandon, deployment, or continue the R&D. As a result by using empirical data of Korea, it is found that there exists a considerable amount of positive real option value (ROV) in the investment of new and renewable energy R&D while its net present value (NPV) calculated by traditional discounted cash flow (DCF) model shows negative value.

Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength (티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계)

  • Choi, Hwanyoung;Kong, Byungseok;Park, Dongkyou
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

Improved AP Deployment Optimization Scheme Based on Multi-objective Particle Swarm Optimization Algorithm

  • Kong, Zhengyu;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1568-1589
    • /
    • 2021
  • Deployment of access point (AP) is a problem that must be considered in network planning. However, this problem is usually a NP-hard problem which is difficult to directly reach optimal solution. Thus, improved AP deployment optimization scheme based on swarm intelligence algorithm is proposed to research on this problem. First, the scheme estimates the number of APs. Second, the multi-objective particle swarm optimization (MOPSO) algorithm is used to optimize the location and transmit power of APs. Finally, the greedy algorithm is used to remove the redundant APs. Comparing with multi-objective whale swarm optimization algorithm (MOWOA), particle swarm optimization (PSO) and grey wolf optimization (GWO), the proposed deployment scheme can reduce AP's transmit power and improves energy efficiency under different numbers of users. From the experimental results, the proposed deployment scheme can reduce transmit power about 2%-7% and increase energy efficiency about 2%-25%, comparing with MOWOA. In addition, the proposed deployment scheme can reduce transmit power at most 50% and increase energy efficiency at most 200%, comparing with PSO and GWO.

Development of Mobile u-Healthcare System in WSN (무선센서네트워크 환경의 모바일 u-헬스케어 시스템 개발)

  • Lee, Seung-Chul;Chung, Wan-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.338-346
    • /
    • 2012
  • Wireless sensor network (WSN) technology provides a variety of medical and healthcare solutions to assist detection and communication of body conditions. However, data reliability inside WSN might be influenced to healthcare routing protocol due to limited hardware resources of computer, storage, and communication bandwidth. For this reason, we have conducted various wireless communication experiments between nodes using parameters such as RF strength, battery status, and deployment status to get a optimal performance of mobile healthcare routing protocol. This experiment may also extend the life time of the nodes. Performance analysis is done to obtain some important parameters in terms of distance and reception rate between the nodes. Our experiment results show optimal distance between nodes according to battery status and RF strength, or deployment status and RF strength. The packet reception rate according to deployment status and RF strength of nodes was also checked. Based on this performance evaluation, the optimized sensor node battery and deployment in the developed our mobile healthcare routing protocol were proposed.

Optimal deployment of sonobuoy for unmanned aerial vehicles using reinforcement learning considering the target movement (표적의 이동을 고려한 강화학습 기반 무인항공기의 소노부이 최적 배치)

  • Geunyoung Bae;Juhwan Kang;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.214-224
    • /
    • 2024
  • Sonobuoys are disposable devices that utilize sound waves for information gathering, detecting engine noises, and capturing various acoustic characteristics. They play a crucial role in accurately detecting underwater targets, making them effective detection systems in anti-submarine warfare. Existing sonobuoy deployment methods in multistatic systems often rely on fixed patterns or heuristic-based rules, lacking efficiency in terms of the number of sonobuoys deployed and operational time due to the unpredictable mobility of the underwater targets. Thus, this paper proposes an optimal sonobuoy placement strategy for Unmanned Aerial Vehicles (UAVs) to overcome the limitations of conventional sonobuoy deployment methods. The proposed approach utilizes reinforcement learning in a simulation-based experimental environment that considers the movements of the underwater targets. The Unity ML-Agents framework is employed, and the Proximal Policy Optimization (PPO) algorithm is utilized for UAV learning in a virtual operational environment with real-time interactions. The reward function is designed to consider the number of sonobuoys deployed and the cost associated with sound sources and receivers, enabling effective learning. The proposed reinforcement learning-based deployment strategy compared to the conventional sonobuoy deployment methods in the same experimental environment demonstrates superior performance in terms of detection success rate, deployed sonobuoy count, and operational time.

A Scheme of Relay Device Deployment for Rapid Formed the Ad hoc Backbone Network and Optimization of Communication Coverage in Disaster Scene (재난현장에서 신속한 애드혹 백본망 형성과 통신권역 최적화를 위한 중계장치 배치기법)

  • Lee, Soon-Hwa;Yoon, Jae-Sun;Kim, Chang-Bock;Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.31-39
    • /
    • 2011
  • For rapid formed the ad hoc wireless backbone network in disaster scene, It is necessary for real-time deployment scheme of wireless ad hoc relay devices by first responders without pre-planning. However, in order to realize this scheme, redundant deployment should be minimized, as well as optimal location of relay devices should be selected to expand communication coverage. Therefore, in this paper, we propose a new deployment scheme of relay devices to optimize communication coverage and then through simulations showed that improved performance of algorithm.

An Energy-Efficient Deployment Strategy for Micro Base Station in Wireless Cellular Systems (무선 셀룰라 시스템에서 에너지 효율적인 마이크로 기지국 배치 방안)

  • Oh, Eunsung
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.316-321
    • /
    • 2012
  • In this paper, we study the energy-efficient deployment strategy for micro base station (BS) in wireless cellular systems. Firstly, we formulate a general problem pertaining to total energy consumption minimization with the requirement of area spectral efficiency (ASE). We start from an observation about the correlation between the area covered by an additional micro BS and the increment of ASE. Under such an observation, we propose an efficient greedy micro BS deployment algorithm. Simulations show that the proposed deployment algorithm can deploy micro BSs with a slight performance reduction comparing with the optimal solution.

Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge

  • Casciati, F.;Casciati, S.;Elia, L.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.523-539
    • /
    • 2016
  • The ambient vibration measurement is an output-data-only dynamic testing where natural excitations are represented, for instance, by winds and typhoons. The modal identification involving output-only measurements requires the use of specific modal identification techniques. This paper presents the application of a reliable method (the Stochastic Subspace Identification - SSI) implemented in a general purpose software. As a criterion toward the robustness of identified modes, a bio-inspired optimization algorithm, with a highly nonlinear objective function, is introduced in order to find the optimal deployment of a reduced number of sensors across a large civil engineering structure for the validation of its modal identification. The Ting Kau Bridge (TKB), one of the longest cable-stayed bridges situated in Hong Kong, is chosen as a case study. The results show that the proposed method catches eigenvalues and eigenvectors even for a reduced number of sensors, without any significant loss of accuracy.