DOI QR코드

DOI QR Code

Optimal deployment of bistatic sonar using particle swarm optimization algorithm

입자 군집 최적화 알고리즘을 이용한 양상태 소나 최적 배치 연구

  • 김지섭 (한양대학교 해양융합과학과) ;
  • 이대혁 (한양대학교 해양융합과학과) ;
  • 양원준 (한양대학교 해양융합과학과) ;
  • 김영승 (한양대학교 해양융합과학과) ;
  • 최지웅 (한양대학교 ERICA 해양융합공학과) ;
  • 권혁종 (국방기술진흥연구소) ;
  • 박중용 (국방과학연구소) ;
  • 손수욱 (국방과학연구소) ;
  • 배호석 (국방과학연구소) ;
  • 박정수 (국방과학연구소)
  • Received : 2024.03.27
  • Accepted : 2024.05.11
  • Published : 2024.07.31

Abstract

Bistatic sonar performance varies significantly depending on the ocean environment, the location (latitude, longitude) and water depth of the source and receiver. Therefore, research on optimal deployment of bistatic sonar considering ocean environment is necessary. In this study, we suggest an algorithm to optimize the location and water depth of source and receiver when operating monostatic and bistatic sonar on two spatially separated surface ships in the Ulleung Basin in the East Sea. A particle swarm optimization algorithm was used to search the location and water depth of the source and receiver to maximize the detectable area within the search area. As a result of performing bistatic sonar deployment using the algorithm proposed in this study, the detectable area increased as the number of model iterations increased. Additionally, it was confirmed that the source and receiver on the two surface ships converged to the optimal location and water depth.

양상태 소나는 해양환경, 송·수신기의 위치(위도, 경도)와 수심에 따라 탐지성능이 크게 변동한다. 따라서 해양환경을 고려한 양상태 소나 최적 배치 연구가 필요하다. 본 연구에서는 동해 울릉분지 지역에서 공간적으로 분리된 수상함 2척에서 각각 단상태 소나와 양상태 소나를 운용하는 경우, 송·수신기의 위치와 수심을 최적 배치하는 알고리즘을 제안한다. 탐색구역 내 탐지가 가능한 면적을 최대화하는 송·수신기의 위치와 수심을 탐색하기 위해 입자 군집 최적화 알고리즘이 사용되었다. 본 연구에서 제안하는 알고리즘으로 배치를 수행한 결과, 모델 반복 횟수의 증가에 따라 탐지면적이 증가하였으며 수상함 2척의 송·수신기가 최적의 위치와 수심에 수렴하는 것이 확인되었다.

Keywords

Acknowledgement

이 논문은 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(UD210004DD).

References

  1. H. Cox, "Fundamentals of bistatic active sonar," in Handbook of Underwater Acoustic Data Processing, edited by Y.T. Chan (Springer, Netherlands, 1989).
  2. M. P. Fewell and S. Ozols, "Simple detection performance analysis of multistatic sonar for anti-submarine warfare," DSTO Tech. Rep., 2011.
  3. S.-U. Son, R. Oh, J. W. Choi, and J.-S. Park, "Development and validation of a performance analysis model for bistatc sonar," Proc. KIMST Annual Conf. Proceedings, 374 (2019).
  4. S.-U. Son, W.-K. Kim, H. S. Bae, and J.-S. Park, "Assessment of acoustic detection performance for a deployment of bi-static sonar" (in Korean), J. Acoust. Soc. Kr. 41, 419-425 (2022).
  5. S. Kim, W. Kim, J. W. Choi, Y. J. Yoon, and J.-S. Park, "Optimal deployment of sensor nodes based on performance surface of acoustic detection" (in Korean), J. KIMS Technol. 18, 538-517 (2015).
  6. P. Mcdowell, Environmetal and statistical performance mapping model for underwater acoustic detection systems, (Ph. D. Theses, University of New Orleans, 2010).
  7. M. Cheon, S. Kim, J. W. Choi, C. Choi, S.-U. Son, and J.-S. Park, "Optimal search pattern of ships based on performance surface" (in Korean), J. KIMS Technol. 20, 328-336 (2017).
  8. S. Kim and J. W. Choi, "Optimal deployment ofsensor nodes based on performance surface of under-water acoustic communication," Sensors, 17, 2389 (2017).
  9. C. Kim, R. Oh, S. Kim, J. W. Choi, and J. Ma, "An efficient search strategy of anti-submarine helicopter based on multi-static operation in furthest-on-circles" (in Korean), J. KIMS Technol. 21, 877-885 (2018).
  10. R. J. Urick, Principles of Underwater Sound 3rd ed. (McGrawHill, New York, 1983), pp. 17-30.
  11. A. D. Waite, Sonar For Practising Engineers 3rd ed. (Spon Press, New York, 2003), pp. 119-124.
  12. M. R. Carnes, "Description and evaluation of GDEM-V 3.0," Nav. Res. Lab. Rep., 2009.
  13. J. Kennedy and R. Eberhart, "Particle swarm optimization," Proc. Neural Networks IEEE International Conference Proceedings, 1942-1948 (1995).
  14. J. Kennedy, "The behavior of particles", Proc. Evolutionary Programming VII, Lecture Notes in Computer Science, 579-589 (1998).
  15. C. Amante and B. W. Eakins, "Etopo1 arc-minute global relief model : procedures, data sources and analysis," NOAA Technical Memorandum, NGDC (National Geophysical Data Center), Rep., 2009.
  16. D. H. Lee, R. Oh, J. W. Choi, S. Kim, and H. Kwon, "Measurements of mid-frequency transmission loss in shallowwaters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model" (in Korean), J. Acoust. Soc. Kr. 40, 297-303 (2021).