• Title/Summary/Keyword: Optimal Control Technology

Search Result 1,619, Processing Time 0.032 seconds

PSO based tuning of PID controller for coupled tank system

  • Lee, Yun-Hyung;Ryu, Ki-Tak;Hur, Jae-Jung;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1297-1302
    • /
    • 2014
  • This paper presents modern optimization methods for determining the optimal parameters of proportional-integral-derivative (PID) controller for coupled tank systems. The main objective is to obtain a fast and stable control system for coupled tank systems by tuning of the PID controller using the Particle Swarm Optimization algorithm. The result is compared in terms of system transient characteristics in time domain. The obtained results using the Particle Swarm Optimization algorithm are also compared to conventional PID tuning method like the Ziegler-Nichols tuning method, the Cohen-Coon method and IMC (Internal Model Control). The simulation results have been simulated by MATLAB and show that tuning the PID controller using the Particle Swarm Optimization (PSO) algorithm provides a fast and stable control system with low overshoot, fast rise time and settling time.

Comparison of WABA and Gd Burnable Absorbers Nuclear Characteristics and Optimal Allocation of Gd Rods in Fuel Assembly (WABA및 가도리니움 독봉 집합체에 대한 핵특성 비교 및 집합체내 가도리니아봉 위치 최적 선정)

  • Jung, Byung-Ryul;Yi, Yu-Han;Lee, Un-Chul;Park, Chan-Oh
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.352-362
    • /
    • 1991
  • Recent popular trends in pressurized water reactor(PWR) fuel management are to extend the cycle length and to employ the low-leakage core designs for the optimal utilization of the uranium resources. In control strategy incorporated with the fuel management, turnable absorbers are required to control the power peaking and to ensure a negative moderator temperature coefficient during reactor operation. In this study, the nuclear characteristics and the optimal allocation of gadolinium-poisoned rods within the fuel assembly are considered using KWU SAV 79 A Code Package. First, analyses are carried out to compare the nuclear characteristics of the fuel assemblies contain-ing WABA(Wet Annular Burnable Absorber) and Gadolinium burnable absorbers respectively. The analyses show that the gadolinium-bearing fuel assembly has peculiar depletion characteristics ensuing from the very large thermal neutron absorption cross section. Peculiar characteristics of gadolinium provide basis for the optimal allocation of Gd rods in fuel assembly. Second, the methodology of an optimal allocation of gadolinium-poisoned rods within the fuel assembly is developed and applied to some nuclear designs.

  • PDF

Configuration assessment of MR dampers for structural control using performance-based passive control strategies

  • Wani, Zubair R.;Tantray, Manzoor A.;Iqbal, Javed;Farsangi, Ehsan Noroozinejad
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.329-344
    • /
    • 2021
  • The use of structural control devices to minimize structural response to seismic/dynamic excitations has attracted increased attention in recent years. The use of magnetorheological (MR) dampers as a control device have captured the attention of researchers in this field due to its flexibility, adaptability, easy control, and low power requirement compared to other control devices. However, little attention has been paid to the effect of configuration and number of dampers installed in a structure on responses reduction. This study assesses the control of a five-story structure using one and two MR dampers at different stories to determine the optimal damper positions and configurations based on performance indices. This paper also addresses the fail-safe current value to be applied to the MR damper at each floor in the event of feedback or control failure. The model is mathematically simulated in SIMULINK/MATLAB environment. Linear control strategies for current at 0 A, 0.5 A, 1 A, 1.5 A, 2 A, and 2.5 A are implemented for MR dampers, and the response of the structure to these control strategies for different configurations of dampers is compared with the uncontrolled structure. Based on the performance indices, it was concluded that the dampers should be positioned starting from the ground floor, then the 2nd floor followed by 1st and rest of the floors sequentially. The failsafe value of current for MR dampers located in lower floors (G+1) should be kept at a higher value compared to dampers at top floors for effective passive control of multi-story structures.

Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization using Genetic Algorithm

  • You, Ki-Sung;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.630-639
    • /
    • 2004
  • The Stewart platform manipulator is a closed-kinematics chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. However, this is a complex and nonlinear system, so the control performance of the system is not so good. In this paper, a new robust motion control algorithm is proposed. The algorithm uses partial state feedback for a class of nonlinear systems with modeling uncertainties and external disturbances. The major contribution is the design of a robust observer for the state and the perturbation of the Stewart platform, which is combined with a variable structure controller (VSC). The combination of controller and observer provides the robust routine called sliding mode control with sliding perturbation observe. (SMCSPO). The optimal gains of SMCSPO, which is determined by nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function that evaluates the gain optimization is to put sliding function. The control performance of the proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart platform. The results showed high accuracy and good performance.

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.

Transient Response of The Optimal Taper-Flat Head Slider in Magnetic Storage Devices

  • Arayavongkul, R.;Mongkolwongrojn, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.990-994
    • /
    • 2004
  • This paper presents a method to predict the transient characteristic of the air lubricated slider head in a hard disk drive by using optimization technique. The time dependent modified Reynolds equation based on the molecular slip flow approximation equations was used to describe the fluid flow within the air bearing and the implicit finite difference scheme is applied to calculate the pressure distribution under the slider head. The exhaustive search combined with the Broyden-Fletcher-Goldfarb-Shanno method were employed to obtain optimum design variables which are taper angle, rail width and taper length in order to keep the forces and moments acting on the slider head in dynamic equilibrium. The results show that the optimal head slider of the magnetic head has good stability characteristic that can reach the steady state within 0.5 microsecond.

  • PDF

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

Development and Application of Sewer Facility Management System (하수도 시설 관리 시스템의 개발 및 적용)

  • Kim, Joon Hyun;Han, Young Han
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.279-285
    • /
    • 1999
  • An integrated sewer management system was developed for the analysis of sewer flow and for optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue in order to construct user-friendly management system. The developed system was applied to a residential area in Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of developed system, and the modeling of sewer flow was implemented using RUNOFF, EXTRAN, TRANSPORT in SWMM. This system is now in the process of connection to the management system of watershed and surface environment in order to develope an integrated environmental management system. Futhermore, this system will be a critical part of overall control system of sewer works including sewer line and wastewater treatment plant. As this system can provide comprehensive prediction of flow and pollution profiles, it could serve as a tool not only for optimal management, but also for decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF

Multi-point sheet forming using elastomer (탄소중합체를 이용한 다점 박판 성형)

  • Park Jong-Woo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.21-28
    • /
    • 2003
  • Recently, instead of a matched die forming method requiring a high cost and long deliverly ten a multi-point dieless forming method using a pair of matrix type punch array as flexible dies has been developed. As this multi-point dieless forming method has some disadvantage of difficulty in precise punch control and high-cost of equipment, a new concept of multi-point dieless forming method combined with elastomer forming was suggested in this study. For optimal selection of elastomers, compression tests of rubbers, polyethylene and foams were carried out together with FEM analysis of the deformation behavior during sheet forming process using a rigid punch and elastomers. Compressive strain was concentrated on the upper central area of the elastomer under the punch, and the rubber exhibited higher concentration of the compressive strain than foams. Two-dimensional curved surface was formed successfully by the multi-point elasto-dieless forming method using an optimal combination of a rubber and foam.

  • PDF

Optimal Design of a Distributed Winding Type Axial Flux Permanent Magnet Synchronous Generator

  • You, Yong-Min;Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.69-74
    • /
    • 2012
  • This paper presents a distributed winding type axial flux permanent magnet synchronous generator (AFPMSG) with reduced the total harmonic distortion (THD), suitable for wind turbine generation systems. Although the THD of the proposed distributed winding type is more reduced than the concentrated winding type, the unbalance of the phase back EMF occurs. To improve the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG, the Kriging based on the latin hypercube sampling (LHS) is utilized. Finally, these optimization results are confirmed by experimental results. As a result, the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG were improved while maintaining the total harmonic distortion (THD) and the average phase back EMF.