• 제목/요약/키워드: Optimal Control

검색결과 7,310건 처리시간 0.042초

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

Optimal control approach to resolve the redundancy of robot manipulators

  • Kim, Sung-Woo;Leen, Ju-Jang;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.234-239
    • /
    • 1993
  • Most of the control problem is for the redundant manipulators use the pseudo-inverse control, thit is, the redundancy is resolved by the pseudo-inverse of the Jacobian matrix and then the controller is designed based on this resolution. However, this pseudo-inverse control has some problems when the redundant robot repeats the cyclic tasks. This is because the pseudo-inverse resolution is a local solution that generates the different configurations of the robot arm for the same hand position. Therefore it is necessary to find the global solution that maintains the optimal configuration of the robot for the repetitive tasks. In this paper, we want to propose a redundancy resolution method by the optimal theory that uses the calculus of variation. The problem formulations are : first to convert the optimal resolution problem to an optimal control problem and then to resolve the redundancy using the necessary conditions of optimal control.

  • PDF

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga;Palanisamy, Muthukumar
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.479-497
    • /
    • 2018
  • This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

열원 및 공조설비 통합 최적제어기법 구현에 관한 연구 (Real Time Near Optimal Control Application Strategy for Heat Source and HVAC System)

  • 송재엽;안병천;주영덕;김진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.60-65
    • /
    • 2008
  • The near-optimal control algorithm for central cooling and heating system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled or hot water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling and heating control system.

  • PDF

중앙냉방시스템의 실시간 준최적제어 적용에 따른 실험적 연구 (Real Time Near Optimal Control Application Strategy of Central Cooling System)

  • 안병천;송재엽;주영덕;김진
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.470-477
    • /
    • 2008
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling control system.

ATM망의 체증을 해결하기 위한 최적 제어기 설계 (Design of Optimal Controller for the Congestion in ATM Networks)

  • 정우채;김영중;임묘택
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권6호
    • /
    • pp.359-365
    • /
    • 2005
  • This paper presents an reduced-order near-optimal controller for the congestion control of Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) networks. We introduce the model, of a class of ABR traffic, that can be controlled using a Explicit Rate feedback for congestion control in ATM networks. Since there are great computational complexities in the class of optimal control problem for the ABR model, the near-optimal controller via reduced-order technique is applied to this model. It is implemented by the help of weakly coupling and singular perturbation theory, and we use bilinear transformation because of its computational convenience. Since the bilinear transformation can convert discrete Riccati equation into continuous Riccati equation, the design problems of optimal congestion control can be reduced. Using weakly coupling and singular perturbation theory, the computation time of Riccati equations can be saved, moreover the real-time congestion control for ATM networks can be possible.

Generalized optimal active control algorithm with weighting matrix configuration, stability and time-delay

  • Cheng, Franklin Y.;Tian, Peter
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.119-135
    • /
    • 1993
  • The paper presents a generalized optimal active control algorithm for earthquake-resistant structures. The study included the weighting matrix configuration, stability, and time-delays for achieving control effectiveness and optimum solution. The sensitivity of various time-delays in the optimal solution is investigated for which the stability regions are determined. A simplified method for reducing the influence of time-delay on dynamic response is proposed. Numerical examples illustrate that the proposed optimal control algorithm is advantageous over others currently in vogue. Its feedback control law is independent of the time increment, and its weighting matrix can be flexibly selected and adjusted at any time during the operation of the control system. The examples also show that the weighting matrix based on pole placement approach is superior to other weighting matrix configurations for its self-adjustable control effectiveness. Using the time-delay correction method can significantly reduce the influence of time-delays on both structural response and required control force.

선형 Magnetostatic 작동기의 정밀 접촉력제어를 위한 최적제어기 설계 (Optimal contact force control for a linear magnetostatic actuator)

  • 강희석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.272-275
    • /
    • 1997
  • When a manipulator makes contact with an object having position uncertainty, performance measures vary considerably with the control law. To achieve the optimal solution for this problem, an unique objective function that weights time and impact force is suggested and is solved with the help of variational calculus. The resulting optimal velocity profile is then modified to define a sliding mode for the impact and force control. The sliding mode control technique is used to achieve the desired performance. Sets of experiments are performed, which show superior performance compared to any existing controller.

  • PDF

JIB크레인의 Constant-level luffing과 시간최적제어 (Constant-level luffing and time optimal control of a JIB crane)

  • 최경배;홍금식;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1788-1791
    • /
    • 1997
  • In this paper constant-level luffing and time optimal control of a JIB crane is investigated. The crane is assumed to have only the derricking motion. the analysis of plance kinematics provides the relationship between the boom angle and the main hosit motor angle for constant-level luffing. The dynamic equations for the crane are very nonlimear, and therefore they are linearized for the application of the linear control theory. The time optimal control in the perspective of no-sway at the end of boom stroke is investigated.

  • PDF