• Title/Summary/Keyword: Optimal Consumption

Search Result 1,076, Processing Time 0.033 seconds

A Study on Quality Characteristics for Dutubpyun according to Grain Fineness of Glutinous Rice Powder (찹쌀가루 입자의 크기에 따른 두텁편의 품질에 관한 연구)

  • Kim Soon-Jo;Woo Kyung-Ja;Choi Won-Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.3
    • /
    • pp.323-331
    • /
    • 2006
  • The manufacture and consumption of traditional Korean rice cake is being revived due to the introduction of various desserts and confectionaries in the food industry. In order to develop this traditional food of Korea and allow various types of rice cakes to enter the market, it is essential to standardize the cooking methodology. In particular, there has been little research on Dutubpyun, a traditional food famous for its good taste. In addition, the original cooking methodology varies between cookbooks. Therefore, in order to standardize the cooking methodology for Dutubpyun referring to various cookbooks, different types Dutubpyun were made by varying the grain fineness of the glutinous rice powder to 16, 20, 30 and 40 meshes, adding up water to 10%, up sugar to 10% and up soy sauce to 5%. Subsequently, a sensory evaluation, and a test on the moisture, degree of gelatinization and hardness during storage were measured to determine the optimal grain fineness of the powder. For the sensory evaluation, where the grain sizes of the glutinous rice powder were different, the 30 and 40 mesh samples received high scores for grain fineness, moisture and chewiness. The 40 mesh samples received high scores for softness, while the overall quality was the highest in the 30 mesh samples. The moisture content during storage was $38.0{\sim}40.6%$ for the samples on the day of cooking, while it was reduced to $33.3{\sim}35%$ after 3 days of storage. Regarding the degree of gelatinization during storage, the maltose content was $2.4{\sim}2.7 mg$ for the samples on the day of cooking. After 3 days, the maltose content was $2.3{\sim}2.8 mg$ but the maltose content was higher in the 40 mesh samples than in the other samples. Regarding the change in hardness during storage, the hardness marked high in the 20 mesh samples on the day of cooking (p<0.05), while it was high in the 16 mesh samples after 3 days of storage (p<0.001). The hardness tended to increase with increasing storage time. Regarding the surface structure of the glutinous rice powder and Dutubpyun, a difference in grain fineness was clearly seen in the 15x-magnifications photograph of the rice powder structure taken by SEM. At 60x and 180x magnifications of surface of Dutubpyun, the 16 mesh samples had a uniform air gap, and a lumpy configuration. Smaller air gaps were dispersed homogeneously and similar to a net in the 20 and 30 mesh samples. The 40 mesh samples showed to a net-likes structure with cracks. Overall, for the best conditions for cooking Dutubpyun, the grain fineness of the glutinous rice power needs to be 30 mesh.

  • PDF

A Novel Globally Asynchronous, Locally Dynamic System Bus Architecture Based on Multitasking Bus (다중처리가 가능한 새로운 Globally Asynchronous, Locally Dynamic System 버스 구조)

  • Choi, Chang-Won;Shin, Hyeon-Chul;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.71-81
    • /
    • 2008
  • In this paper, we propose a novel Globally Asynchronous, Locally Dynamic System(GALDS) bus and demonstrate its performance. The proposed GALDS bus is the bidirectional multitasking bus with the segmented bus architecture supporting the concurrent operation of multi-masters and multi-slaves. By analyzing system tasks, the bus architecture chooses the optimal frequency for each If among multiples of bus frequency and thus we can reduce the overall power consumption. For efficient data communications between IPs operating in different frequencies, we designed an asynchronous and bidirectional FIFO based on an asynchronous wrapper with hand-shaking interface. In addition, since systems can be easily expandable by inserting bus segments, the proposed architecture has advantages in IP reusability and structural flexibility As a test example, a four-segment bus haying four masters and four slaves were designed by using Verilog HDL. We demonstrate multitasking operations with read/write data transfers by simulation when the ratios of operation frequency are 1:1, 1:2, 1:4 and 1:8. The data transfer mode is a 16 burst increment mode compatible with Advanced Microcontroller Bus Architecture(AMBA). The maximum operation latency of the proposed GALDS bus is 22 clock cycles for the bus write operation, and 44 clock cycles for read.

Effects of Dietary Copper on Ruminal Fermentation, Nutrient Digestibility and Fibre Characteristics in Cashmere Goats

  • Zhang, Wei;Wang, Runlian;Zhu, Xiaoping;Kleemann, David O;Yue, Chungwang;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1843-1848
    • /
    • 2007
  • Thirty-six 1.5 year-old Inner Mongolian White Cashmere wether goats (body weight $28.14{\pm}1.33$ kg) were used to determine the effects of dietary copper (Cu) concentration on ruminal fermentation, nutrient digestibility and cashmere fibre characteristics. Wethers were fed a basal diet (containing 7.46 mg Cu/kg DM) that was supplemented with either 0 (control), 10, 20 or 30 mg Cu/kg DM. To ensure full consumption, animals were fed restrictedly with 0.75 kg feed (DM) in two equal allotments per day. The results indicated that: (1) supplemental 10 mg Cu/kg DM in the basal diet significantly (p<0.05) decreased ruminal fluid pH value and total VFA concentrations were significantly (p<0.05) increased on all Cu treatment groups. (2) Cu supplementation had no influence on DM intake and digestibility of DM, CP and ADF (p>0.05); however, NDF digestibility of groups supplemented with 10 and 20 mg Cu/kg DM were significantly higher than that of the control group (p<0.05). Apparent absorption and retention of copper were decreased with increasing level of supplementation. (3) 20 mg Cu/kg DM treatment significantly (p<0.05) improved cashmere growth rate, but cashmere diameter was not affected by Cu supplementation (p>0.05). In conclusion, supplementation of cashmere goats with Cu at the rate of 10 to 20 mg/kg DM in the basal diet resulted in some changed rumen fermentation and was beneficial for NDF digestibility, while supplementation of 20 mg Cu/kg DM improved cashmere growth. Collectively, the optimal supplemental Cu level for cashmere goats during the fibre growing period was 20 mg/kg DM (a total dietary Cu level of 27.46 mg/kg DM).

An Approach for Solid Modeling and Equipment Fleet Management Towards Low-Carbon Earthwork (저탄소 토공을 위한 솔리드 모델링 및 건설장비 플릿관리 방법론)

  • Kim, Sung-Keun;Kim, Gyu-Yeon;Park, Ju-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.501-514
    • /
    • 2015
  • Earthwork is a basic operation for all forms of civil works and affects construction time, cost and productivity. It is a mechanized operation that needs various construction equipment as a group and uses a lot of fuel for construction equipment. But, the problem is that earthwork operation is usually performed by equipment operator's heuristic and intuition, which can cause low productivity, high fuel consumption, and high carbon dioxide emission. As one of solutions for this problem, the fleet management system for construction equipment is suggested for effective earthwork planning, optimal equipment allocation, efficient machine operation, fast information exchange, and so forth. The purpose of this research is to suggest core methods for developing the equipment fleet management system. The methods include 3D solid parametric model generation, soil distribution using Cctree data structure, equipment fleet construction and equipment fleet operation. A simulation test is performed to verify the effectiveness of the equipment fleet management system in terms of equipment operating ratio, fuel usage, and $CO_2$ emission.

Effect of EGR on power and exhaust emissions in diesel engine (디젤엔진의 출력 및 배기가스에 미치는 EGR의 영향)

  • Song, Kyu-keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.870-875
    • /
    • 2015
  • Diesel engines are widely used due to superior power and fuel consumption, however there are many challenges in exhaust gas management. Exhaust gas recirculation (EGR) is the most effective technique for reducing mono-nitrogen oxide (NOx) emissions in a diesel engine, in comparison with other catalytic technologies. In addition, the technology has a number of advantages in terms of economic efficiency and implementation. In this study, the effects on the power and exhaust characteristics of diesel engines equipped with EGR systems were investigated. It was found that as the EGR rate increased, horsepower expressed as IHP and BHP decreased. The net effect of the application of EGR was measured at various engine speeds. EGR technology caused decreases in BHP of around 9% during low engine speed and 3.5% during high engine speed. Additionally, NOx emissions reduced as the EGR rate increased, and increased as engine speed increased. However, smoke emissions increased as the EGR rate increased, and decreased as engine speed increased. The optimum operating conditions and ERG rate to simultaneously achieve minimum NOx and smoke emissions were investigate. It was found that as the EGR rate increased, optimal operating speed for minimal NOx and smoke also increased. Keywords: Diesel engine, Exhaust gas recirculation, Power perfomance, Emission characteristics, NOx, Smoke

Effect of Chemical Composition and Dietary Enzyme Supplementation on Metabolisable Energy of Wheat Screenings

  • Mazhari, M.;Golian, A.;Kermanshahi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.386-393
    • /
    • 2011
  • Three trials were conducted to determine the available energy of different wheat screening varieties collected from different locations of Khorasan in Iran. In experiment 1, chemical composition and the nitrogen corrected true metabolisable energy (TMEn) were evaluated. A precision-fed rooster assay was used, in which, each wheat screening sample was tube fed to adult roosters, and the excreta were collected for 48-h. In Exp. 2 and 3, five and two wheat screening verities-based diets with or without xylanase and phytase were fed to 16-day old battery reared chicks respectively, and total feed consumption and excreta were measured during next three days. The variable nature of wheat screening varieties led to significant differences in mean TMEn values (p<0.01). The TMEn values of samples determined with adult roosters varied by ${\pm}5.03%$ of the mean value ($3,097.65{\pm}49.32\;kcal/kg$) and ranged from 2,734.90 to 3,245.12 kcal/kg. There was a significant correlation (p<0.05) between crude fiber (CF), neutral detergent fiber (NDF), and acid detergent fiber (ADF) with TMEn, and the greatest correlation coefficient was observed between NDF and TMEn (r = -0.947; p<0.001). The optimal equation in terms of $R^2$ from using a single chemical analysis was obtained with NDF: TMEn = 4,152.09-27.80 NDF ($R^2$ = 0.90, p<0.0001), and the TME prediction equation was improved by the addition of the crude protein (CP) and ASH content to sequential analysis: TMEn = 3,656.97-28.65 NDF+32.54 CP+38.70 ASH ($R^2$ = 0.98, p<0.0001). The average AMEn values of 5 and 2 wheat screening varieties determined with young broiler chickens were $2,968.41{\pm}25.70\;kcal/kg$ and $2,976.38{\pm}8.34\;kcal/kg$ in Exp. 2 and Exp. 3, respectively. Addition of xylanase and phytase to wheat screenings resulted in significant (p<0.01) improvement in AMEn by 4.21 and 2.92%, respectively.

Optimum design of propulsion shafting system considering characteristics of a viscous damper applied with high-viscosity silicon oil (고점도 실리콘오일 적용 점성댐퍼 동특성을 고려한 추진축계 최적 설계)

  • Kim, Yang-Gon;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.202-208
    • /
    • 2017
  • The recently developed marine engines for propulsion of ships have higher torsional exciting force than previous engines to improve the propulsion efficiency and to reduce specific fuel oil consumption. As a result, a viscous damper or viscous-spring damper is installed in front of marine engine to control the torsional vibration. In the case of viscous damper, it is supposed that there is no elastic connection in the silicon oil, which is filled between the damper housing and inertia ring. However, In reality, the silicon oil with high viscosity possesses torsional stiffness and has non-linear dynamic characteristics according to the operating temperature and frequency of the viscous damper. In this study, the damping characteristics of a viscous damper used to control the torsional vibration of the shafting system have been reviewed and the characteristics of torsional vibration of the shafting system equipped with a corresponding viscous damper have been examined. In addition, it is examined how to interpret the theoretically optimal dynamic characteristics of a viscous damper for this purpose, and the optimum design for the propulsion shafting system has been suggested considering the operating temperature and aging. when the torsional vibration of the shafting system is controlled by a viscous damper filled with highly viscous silicon oil.

Experimental Study on the Control Characteristics of Each Channel in a Semiconductor Chiller (반도체 공정용 칠러의 채널별 제어특성에 관한 실험적 연구)

  • Kim, Hyeon-Joong;Kwon, Oh-Kyung;Cha, Dong-An;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1285-1292
    • /
    • 2011
  • The characteristics of a semiconductor chiller system with EEV have been experimentally studied. Three experiments on temperature changes (increase and decrease), load variation, and control precision were conducted to investigate the operating characteristics of the semiconductor chiller. The power consumption was 8.9 kW during increase in temperature. The required time was 37.5 min for CH1 and 39.5 min for CH2. Moreover, the time required for falling temperature was 26.5 min. The control precision for partial load operation was relatively low compared to that of a full load operation. In addition, the CH2 equipped with a step motor showed better control precision. The power consumed by the chiller for process cooling water was 1.8 kW, which was one-half of that consumed during the refrigeration cycle. The objective of this study is to provide an optimal control guideline for the semiconductor chiller design.

Decision Support Process Model for Energy Efficient Remodeling Projects focused on Building Envelope and Renewable-energy Systems (에너지절감형 리모델링을 위한 적정 대안 선정 프로세스 모델 - 건축물 외피 및 신재생에너지 시스템을 중심으로 -)

  • Shin, Young-su;Cho, Kyuman;Kim, Jae-youn
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.91-100
    • /
    • 2015
  • An increase in energy such as natural gas, coal, oil, has occurred to a large amounts of environment impact emissions, it is necessary to reduce in the construction industry for the energy consumption. To encourage remodeling project in developed countries of the majority, on the basis of this, remodeling project in the construction industry has grown to a large amount. Results of analysis of the research related to the advanced remodeling, analysis of the economic validity in accordance with the production and process and building elapsed years of selection alternative of remodeling there has been a problem that has not been properly reflected. In this study, a decision support model that can simultaneously choose the most cost-effective and energy-efficiency alternative. Developed process model, generates a "Remodeling Solution" that combines the renewable energy equipment and envelope system, energy performance evaluation of the application of international standards(ISO-13790, DIN V 18599), perform the economic evaluation through LCCA(Life Cycle Cost Analysis) technique, circulated evaluation and configured to output the optimal Remodeling Solution. The results of applying the model developed in the case, it was confirmed that it is possible to select a choice of cost-effective energy-saving alternative. Then, developed model through this study, it is expected to be able to help highly effective remodeling alternative to selecting by decision-makers.

Preparation and Characteristics of Fish-frame-added Snacks (Fish-frame을 이용한 snack의 제조 및 특성)

  • Kang Kyung-Tae;Heu Min-Soo;Kim Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.3
    • /
    • pp.261-268
    • /
    • 2006
  • Fish-frames are processing byproducts, which are left after obtaining fillets or muscle during fish processing. The fish-frame generally consists of muscle, collagen, calcium, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We used fish-frame powder (FFP) of chum salmon and skipjack tuna to prepare and characterize snacks for human consumption with different proportions of FFP. The crude protein and lipid contents of fish-frames were 16.3 and 9.4% for chum salmon and 18.6 and 8.3% for skipjack tuna, respectively. The volatile basic nitrogen (30.6 mg/100 g) and browning index (0.393) of FFP from chum salmon were lower than those of FFP from skipjack tuna. Thus, the FFP of chum salmon was better for making snacks than that of skipjack tuna. Five snacks were prepared with 0, 10, 20, 30, and 40% (w/w) substitution ratios of FFP from chum salmon. The moisture content of the snacks decreased (33.6 to 11.5%) with increasing FFP substitution ratio, whereas crude ash (2.9 to 7.5%), protein (11.4 to 18.4%) and lipid (13.7 to 35.1%) increased. Sensory scores for the texture and taste of the snack with 30% FFP were significantly higher (p<0.05) than those for other snacks; the color and flavor scores of all snacks did not differ significantly. The major fatty acids in the snacks were 16:0 and 18:0 as saturates, 18:1n-9 as monoenes, and 18:2n-6 and 18:3n-3 as polyenes. Snacks with FFP contained small amounts of EPA (0.5 to 0.8%) and DHA (1.3 to 1.8%) in the total lipid composition. The total amino acid content (16.08 g/100 g) of the snack with 30% FFP was higher than that of the snack without FFP (11.18 g/100 g), and the major amino acids were aspartic acid, glutamic acid, glycine, leucine, and lysine. The calcium and phosphorus contents of the snack with 30% FFP were 1,272 mg/100 g and 854 mg/100 g, respectively, and their ratio was the optimal range (2:1 to 1:2) for body absorption efficiency.