• Title/Summary/Keyword: Optimal Computing

Search Result 639, Processing Time 0.027 seconds

FEA-Based Optimal Design of Permanent Magnet DC Motor Using Internet Distributed Computing

  • Lee, Cheol-Gyun;Choi, Hong-Soon
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 2009
  • The computation time of FEA(finite element analysis) for one model may range from a few seconds up to several hours according to the complexity of the simulated model. If these FEA is used to calculate the objective and the constraint functions during the optimal solution search, it causes very excessive execution time. To resolve this problem, the distributed computing technique using internet web service is proposed in this paper. And the dynamic load balancing mechanisms are established to advance the performance of distributed computing. To verify its validity, this method is applied to a traditional mathematical optimization problem. And the proposed FEA-based optimization using internet distributed computing is applied to the optimal design of the permanent magnet dc motor(PMDCM) for automotive application.

  • PDF

Design and optimization of steel trusses using genetic algorithms, parallel computing, and human-computer interaction

  • Agarwal, Pranab;Raich, Anne M.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.325-337
    • /
    • 2006
  • A hybrid structural design and optimization methodology that combines the strengths of genetic algorithms, local search techniques, and parallel computing is developed to evolve optimal truss systems in this research effort. The primary objective that is met in evolving near-optimal or optimal structural systems using this approach is the capability of satisfying user-defined design criteria while minimizing the computational time required. The application of genetic algorithms to the design and optimization of truss systems supports conceptual design by facilitating the exploration of new design alternatives. In addition, final shape optimization of the evolved designs is supported through the refinement of member sizes using local search techniques for further improvement. The use of the hybrid approach, therefore, enhances the overall process of structural design. Parallel computing is implemented to reduce the total computation time required to obtain near-optimal designs. The support of human-computer interaction during layout optimization and local optimization is also discussed since it assists in evolving optimal truss systems that better satisfy a user's design requirements and design preferences.

Distributed Optimal Path Generation Based on Delayed Routing in Smart Camera Networks

  • Zhang, Yaying;Lu, Wangyan;Sun, Yuanhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3100-3116
    • /
    • 2016
  • With the rapid development of urban traffic system and fast increasing of vehicle numbers, the traditional centralized ways to generate the source-destination shortest path in terms of travel time(the optimal path) encounter several problems, such as high server pressure, low query efficiency, roads state without in-time updating. With the widespread use of smart cameras in the urban traffic and surveillance system, this paper maps the optimal path finding problem in the dynamic road network to the shortest routing problem in the smart camera networks. The proposed distributed optimal path generation algorithm employs the delay routing and caching mechanism. Real-time route update is also presented to adapt to the dynamic road network. The test result shows that this algorithm has advantages in both query time and query packet numbers.

Virtual Optimal Design of Satellite Adapter in Parallel Computing Environment (병렬 컴퓨팅 환경 하에서 인공위성 어댑터 가상최적설계)

  • Moon, Jong-Keun;Yoon, Young-Ha;Kim, Kyung-Won;Kim, Sun-Won;Kim, Jin-Hee;Kim, Seung-Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.973-982
    • /
    • 2007
  • In this paper, optimal design framework is developed by automatic mesh generation and PSO(Particle Swarm Optimization) algorithm based on parallel computing environment and applied to structural optimal design of satellite adapter module. By applying automatic mesh generation, it became possible to change the structural shape of adapter module. PSO algorithm was merged with parallel computing environment and for maximizing a computing performance, asynchronous PSO algorithm was developed and could reduce the computing time of optimization process. As constraint conditions, eigen-frequency and maximum stress was considered. Finally using optimal design framework, weight reduction of satellite adapter module is derived with satisfaction of structural safety.

Global Optimum Searching Technique of Multi-Modal Function Using DNA Coding Method (DNA 코딩을 이용한 multi-modal 함수의 최적점 탐색방법)

  • 백동화;강환일;김갑일;한승수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.225-228
    • /
    • 2001
  • DNA computing has been applied to the problem of getting an optimal solution since Adleman's experiment. DNA computing uses strings with various length and four-type bases that makes more useful for finding a global optimal solutions of the complex multi-modal problems. This paper presents DNA coding method for finding optimal solution of the multi-modal function and compares the efficiency of this method with the genetic algorithms (GA). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string and DNA coding method uses a tool of calculation or Information store with DNA molecules and four-type bases denoted by the symbols of A(Ademine), C(Cytosine), G(Guanine) and T(Thymine). The same operators, selection, crossover, mutation, are applied to the both DNA coding algorithm and genetic algorithms. The results show that the DNA based algorithm performs better than GA.

  • PDF

SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game

  • Hu, Hao;Liu, Jing;Tan, Jinglei;Liu, Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4157-4175
    • /
    • 2020
  • Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.

Analytical Approach for Optimal Allocation of Distributed Generators to Minimize Losses

  • Kaur, Navdeep;Jain, Sanjay Kumar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1582-1589
    • /
    • 2016
  • In this paper the integration of Distributed Generation (DG) in radial distribution system is investigated by computing the optimal site and size of DG to be placed. An analytical expression based on equivalent current injection has been derived by utilizing topological structure of radial distribution system to find optimal size of DG to minimize losses. In the presented formulation, the optimal DG placement is obtained without repeatedly computing the load flow. The proposed formulation can be used to find the optimal size of all types of DGs namely Type-I, Type-II, Type-III and Type-IV DGs. The investigations are carried out on IEEE 33-bus and 69-bus radial distribution systems. The optimal DG placement results into reduction in active and reactive power losses and improvement in voltage profile of the buses.

Optimal Decomposition of Convex Structuring Elements on a Hexagonal Grid

  • Ohn, Syng-Yup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.37-43
    • /
    • 1999
  • In this paper, we present a new technique for the optimal local decomposition of convex structuring elements on a hexagonal grid, which are used as templates for morphological image processing. Each basis structuring element in a local decomposition is a local convex structuring element, which can be contained in hexagonal window centered at the origin. Generally, local decomposition of a structuring element results in great savings in the processing time for computing morphological operations. First, we define a convex structuring element on a hexagonal grid and formulate the necessary and sufficient conditions to decompose a convex structuring element into the set of basis convex structuring elements. Further, a cost function was defined to represent the amount of computation or execution time required for performing dilations on different computing environments and by different implementation methods. Then the decomposition condition and the cost function are applied to find the optimal local decomposition of convex structuring elements, which guarantees the minimal amount of computation for morphological operation. Simulation shows that optimal local decomposition results in great reduction in the amount of computation for morphological operations. Our technique is general and flexible since different cost functions could be used to achieve optimal local decomposition for different computing environments and implementation methods.

  • PDF

A Hybrid Soft Computing Technique for Software Fault Prediction based on Optimal Feature Extraction and Classification

  • Balaram, A.;Vasundra, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.348-358
    • /
    • 2022
  • Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.

Optimal Design of Permanent Magnet Wind Generator for Maximum Annual Energy Production (최대 연간 에너지 생산을 위한 영구자석형 풍력발전기의 최적설계)

  • Jung, Ho-Chang;Jung, Sang-Yong;Hahn, Sung-Chin;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2109-2115
    • /
    • 2007
  • The wind generators have been installed with high output power to increase the energy production and efficiency. Hence, Optimal design of the direct-driven PM wind generator, coupled with F.E.M(Finite Element Method) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. Particularly, the parallel computing via internet web service has been applied to loose excessive computing times for optimization. The results of the optimal design of Surface-Mounted Permanent Magnet Synchronous Generator(SPMSG) are compared with each other candidates to verify the usefulness of the maximizing AEP model.