• Title/Summary/Keyword: Optical surface scanning

Search Result 534, Processing Time 0.035 seconds

Properties of Nitrogen and Aluminum Codoped ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 성장한 질소와 알루미늄 도핑된 ZnO 박막의 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.129-133
    • /
    • 2008
  • Nitrogen and aluminum codoped ZnO(NAZO) thin films were grown on glass substrates with changing the nitrogen flow ratio by radio-frequency magnetron sputtering. The structural, optical, and electrical properties of the NAZO films were investigated. The surface morphologies and the structural properties of the thin films were analyzed by using the X-ray diffraction and scanning electron microscopy. The NAZO thin film, deposited at nitrogen flow ratio of 0%, showed a strongly c-axis preferred orientation and the lowest resistivity of $3.2{\times}10^{-3}{\Omega}cm$. The intensity of ZnO(002) diffraction peak was decreased gradually with increasing the nitrogen flow ratio. The optical properties of the films were measured by UV-VIS spectrophotometer and the optical transmittances for all the samples were found to be an average 90% in the visible range. Based on the transmittance value, the optical bandgap energy for the NAZO thin film deposited at nitrogen flow ratio of 0% was determined to be 3.46 eV. As for the electrical properties, the carrier concentration and the hall mobility were decreased, but the electrical resistivity was increased as the nitrogen flow ratio was increased.

Microscopic Observation of Kenaf by Optical and Scanning Electron Micrograph (Kenaf 구성 세포의 현미경적 관찰)

  • Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • Anatomical characteristics of kenaf were investigated in transverse, radial and tangential direction by optical and scanning electron micrograph. Kenaf was made up of bast fibers, wood fibers, vessels and parenchyma cells. Bast fibers were long slender cells with different types of pits. The shape of wood fibers were in various ways and pointed at the ends. The pits were observed on the surface of bast fibers. Kenafs were diffuse and radial porous. and composed of solitary pores and two or three radial pore multiples. Various types of vessels were observed. The pits showed alternate pitting and larger diameter than other cells. Parenchyma cells were rectangular or square with different shapes of pith parenchyma cells compared to conventional types of parenchyma cells in wood. The number of pith on the surfaces were small.

Dithering Sample Stage Based Near-field Scanning Optical Microscope

  • Park, Gyeong-Deok;Jeong, Mun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.559-559
    • /
    • 2012
  • We developed a new scheme for the highly sensitive near-field scanning optical microscope (NSOM) by using a dithering sample stage rather than a dithering probe. In the proposed scheme, the sample is directly loaded on one prong surface of a dithering bare tuning fork. Gap control between probe and sample is performed by detecting the shear force between an immobile fiber probe and the dithering sample. In a conventional NSOM, the Q factor drastically decreases from 7783 to 1000 or even to 100 by attaching a probe to the tuning fork. In our proposed NSOM, on the contrary, the Q factor does not change significantly, 7783 to 7480, when the sample is loaded directly to the tuning fork instead of attaching a probe. Consequently, the graphene sheets that cannot be observed by a conventional NSOM were clearly observed by the proposed method with sub-nanometer vertical resolution due to the extremely high Q factor.

  • PDF

A Study on Electrostatic Powder Coating for 3D Scanning of Diffused Surfaces (난반사 표면의 3D 스캐닝을 위한 정전분말코팅 연구)

  • Maeng, Heeyoung;Lee, Myoung Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • Using an optical 3D scanning device to collect data from a diffused reflection surface is very difficult. To solve this problem, there are many applications including a spray-type developer and silicon molds. However, using a developer can cause chemical reactions between objects and particles of the developer and uneven surfaces on the object. To overcome these problems, we suggest an electrostatic powder coating method for even coating of particles onto surfaces for collecting 3D shape data. We have developed an automatic, electrostatic powder-coating machine and performed three different experiments to compare this system with a laser interferometer and a T-scan 3D scanner. As a result, we could ascertain the various characteristics of this new method, including good sensitivity for the various surface states of the bare surface, developer, and electrostatic powder coating. Finally, we verified the outstanding scanning performance and were able to demonstrate that this method achieves quality than traditional methods.

An Algorithm for Discontinuous Surface Profile Measurement using Wavelength Scanning Interferometer (파장 주사 간섭계를 이용한 불연속면의 표면 형상 측정 알고리즘)

  • 우현구;강철무;조형석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.507-514
    • /
    • 2003
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. Recently the shape measurement using interferometric principle is found to be a successful methodology among other visual or optical technologies. Especially, the measuring method using wavelength scanning interferometer(WSI) has a great advantage in comparison with other conventional jnterferometric methods in that the absolute distance from the reference surface can be directly obtained from the amount of jnterferometric phase change. However, the measurement methods using WSI proposed by other researchers have low measurement resolution so far because they can't measure fractional phase change. To avoid this shortcoming we propose a new algorithm in this paper, which can obtain a small amount of even fractional phase change by sinusoidal function fitting. To evaluate the effectiveness of the proposed sinusoidal function fitting algorithm, a series of measuring experiments are conducted for discontinuously shaped specimens which have various height. The proposed algorithm shows much more enhanced measurement resolution than other existing conventional algorithms such as zero crossing algorithm and Fourier transform algorithm.

An Optimized Methodology to Observe Internal Microstructures of Aloe vera by Cryo-Scanning Electron Microscope

  • Choi, Yoon Mi;Shin, Da Hye;Kim, Chong-Hyeak
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.76-82
    • /
    • 2016
  • Aloe vera has been used in the pharmaceutical, food and cosmetic industry for its therapeutic properties. However, there are not many current studies on the microstructure of A. vera compared to studies on the chemical constituents and health efficacy of A. vera. Therefore, we compared the morphology of an A. vera leaf using an optical microscope, a conventional scanning electron microscope (SEM) and a cryo-SEM. Especially, this study focused on observing the gel in the inner leaf of A. vera, which is challenging using standard imaging techniques. We found that cryo-SEM is most suitable method for the observation of highly hydrated biomaterials such as A. vera without removing moisture in samples. In addition, we found the optimal analytical conditions of cryo-SEM. The sublimation conditions of $-100^{\circ}C$ and 10 minutes possibly enable the surface of the inner leaf of A. vera to be observed in their "near life-like" state with retaining moisture. The experiment was repeated with A. arborescens and A. saponaria to confirm the feasibility of the conditions. The results of this study can be applied towards the basic research of aloe and further extend previous knowledge about the surface structures of the various succulent plants.

Automation of laser scanning and registration of measured data using a 3-axis motorized stage (3축 전동테이블을 이용한 레이저 스캐너의 측정 및 레지스트레이션 자동화)

  • Son, Seok-Bae;Kim, Seung-Man;Lee, Kwan-Heng
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.134-139
    • /
    • 2001
  • Laser scanners are widely used for reverse engineering and inspection of freeform parts in industry such as motors, electronic products, dies and molds. Due to the lack of measuring software and positioning device, the laser scanning processes have been erroneous and inconsistent. In order to automate measuring processes, an automated scan plan generation software and a proprietary hardware are developed. In this paper, an automated laser scanning system using a 3-axis motorized stage is proposed. In the scan planning step, scan directions, paths, and the number of scans are generated considering optical and mechanical parameters. In the scanning step, the generated scan plan is downloaded into the laser scanner and the motorized stage and the points on the surface are captured automatically. Finally, the point data set is analyzed to evaluate the performance of the system.

  • PDF

A Study on the 3D Scanning of Fashionable Textile Materials - Ripple-finished Cotton Fabric and Shrink-proof Finished/Felted Wool Fabric -

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.101-112
    • /
    • 2011
  • Three-dimensional(3D) virtual clothing simulation system may require the use of physical, mechanical, and configurational data in order to mimic the actual clothing with high degree of realism. Therefore the 3-dimensional scanning system based on optical methods was adopted to extract the 3-dimensional data of the fabric surface. In this study, the appearances of the 3-dimensionally transformed textile fabrics via several finishing procedures were investigated using a 3D scanning system. The wool gauze fabrics treated with the shrink-proof finishing and the felting process showed height changes up to 4.5mm. The 3-dimensional configuration may be objectively described by the use of mesh generation from the scanned output. The generated mesh information may further be utilized in the 3D virtual clothing simulation system for accurate description of the fashionable textile materials used in the simulation system.

Fabrication of micro mirror array for small form factor optical pick-up by micro UV-molding (마이크로 UV 성형을 통한 초소형 광픽업용 마이크로 미러 어레이 제작)

  • Choi Yong;Lim Jiseok;Kim Seokmin;Sohn Jin-Seung;Kim Hae-Sung;Kang Shinill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.47-50
    • /
    • 2005
  • In this study, micro mirror array for small form factor optical pick-up was replicated by micro UV-molding. First, mold for micro mirror array was fabricated using micromachining. Also, to analyze the characteristics of the surface quality, flatness of replicated mirror surface were measured by white light scanning inteferometry system. The results show that the micro mirror array with a sufficient surface quality can be obtained by polymer replication process.

  • PDF

Effect of annealing atmosphere on the properties of chemically deposited Ag2S thin films

  • Pawar, S.M.;Shin, S.W.;Lokhande, C.D.;Kim, J.H.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.34.2-34.2
    • /
    • 2009
  • The silver sulphide (Ag2S) thin films have been chemically deposited from an alkaline medium (pH 8 to 10) by using a silver nitrate and thiourea as a Ag and S ion precursor sources. Ethylene Damine tetraacetic acid (EDTA) was used as a complexing agent. The effect of annealing atmosphere such as Ar, N2+H2S and O2 on the structural, morphological and optical properties of Ag2S thin films has been studied. The annealed films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques for the structural, morphological, and optical properties, respectively. XRD studies reveal that the as-deposited thin films are polycrystalline with monoclinic crystal structure, is converted in to silver oxide after air annealing. The surface morphology study shows that grains are uniformly distributed over the entire surface of the substrate. Optical absorption study shows the as-deposited Ag2S thin films with band gap energy of 0.92eV and after air annealing it is found to be 2.25 eV corresponding to silver oxide thin films.

  • PDF