• 제목/요약/키워드: Optical space

검색결과 1,519건 처리시간 0.032초

Improved optical design and performances of Amon-Ra instrument energy channel

  • Seong, Se-Hyun;Hong, Jin-Suk;Ryu, Dong-Ok;Park, Won-Hyun;Lee, Han-Shin;Kim, Sug-Whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this report, we present newly improved optical design for the Amon-Ra energy channel and its optical performance. The design is optimized parametrically with emphasis on improved light concentration. And then its performances are computed, first, from a laboratory test simulation using laser method (wave optics approach) and, second, from an in-orbit radiative transfer simulation using IRT method with 3D Earth model (geometrical optics approach). Two simulation test results show clear evidence of energy concentration improvement.

  • PDF

Model-Based Tabu Search Algorithm for Free-Space Optical Communication with a Novel Parallel Wavefront Correction System

  • Li, Zhaokun;Zhao, Xiaohui;Cao, Jingtai;Liu, Wei
    • Journal of the Optical Society of Korea
    • /
    • 제19권1호
    • /
    • pp.45-54
    • /
    • 2015
  • In this study, a novel parallel wavefront correction system architecture is proposed, and a model-based tabu search (MBTS) algorithm is introduced for this new system to compensate wavefront aberration caused by atmospheric turbulence in a free-space optical (FSO) communication system. The algorithm flowchart is presented, and a simple hypothetical design for the parallel correction system with multiple adaptive optical (AO) subsystems is given. The simulated performance of MBTS for an AO-FSO system is analyzed. The results indicate that the proposed algorithm offers better performance in wavefront aberration compensation, coupling efficiency, and convergence speed than a stochastic parallel gradient descent (SPGD) algorithm.

Introduction of High Resolution Spectrograph by using Optical Freauency Comb.

  • 한인우;김강민;윤태현
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • OFC (Optical Frequency Comb) is an optical spectrum which consists of equidistant lines in frequency space. OFC can thus be used as an optical ruler. Since it was demonstrated in late 1990s, it is revolutionizing many fields in frequency metrology such as the measurement of absolute optical frequencies, the measure ratios of optical frequencies with extremely high precision. It is also used in high-precision spectroscopy. In astronomy, OFC can be used as a very accurate and stable wavelength standard for a high resolution spectrograph to measure the radial velocity of celestial bodies with extremely high accuracy of about several tens cm/s. In our presentation, we will introduce some basic concepts of OFC and some issues to use it in astronomical spectrograph. We will also present our plan to develop a high resolution spectrograph with OFC.

  • PDF

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.

INTERNATIONAL COLLABORATION FOR SILICON CARBIDE MIRROR POLISHING AND DEVELOPMENT

  • HAN, JEONG-YEOL;CHO, MYUNG;POCZULP, GARY;NAH, JAKYUNG;SEO, HYUN-JOO;KIM, KYUNG-HWAN;TAHK, KYUNG-MO;KIM, DONG-KYUN;KIM, JINHO;SEO, MINHO;LEE, JONGGUN;HAN, SUNG-YEOP
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.687-690
    • /
    • 2015
  • For research and development of Silicon Carbide (SiC) mirrors, the Korea Astronomy and Space Science Institute (KASI) and National Optical Astronomy Observatory (NOAO) have agreed to cooperate and share on polishing and measuring facilities, experience and human resources for two years (2014-2015). The main goals of the SiC mirror polishing are to achieve optical surface figures of less than 20 nm rms and optical surface roughness of less than 2 nm rms. In addition, Green Optics Co., Ltd (GO) has been interested in the SiC polishing and joined the partnership with KASI. KASI will be involved in the development of the SiC polishing and the optical surface measurement using three different kinds of SiC materials and manufacturing processes (POCO$^{TM}$, CoorsTek$^{TM}$ and SSG$^{TM}$ corporations) provided by NOAO. GO will polish the SiC substrate within requirements. Additionally, the requirements of the optical surface imperfections are given as: less than 40 um scratch and 500 um dig. In this paper, we introduce the international collaboration and interim results for SiC mirror polishing and development.

Surface Error Generation of Freeform Mirror Based on Zernike Polynomial for Optical Performance Prediction

  • Lee, Sunwoo;Park, Woojin;Han, Jimin;Ahn, Hojae;Kim, Yunjong;Lee, Dae-Hee;Kim, Geon Hee;Pak, Soojong
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.67.2-67.2
    • /
    • 2020
  • Not only the magnitude of the mirror surface error, the pattern matters as it produces certain aberrations. In particular, the surface error of the freeform mirrors, which are optimized to eliminate specific aberrations, might show much higher sensitivity in optical performance. Therefore, we analyze the mirror surface error with Zernike polynomials with the goal of generating a realistic error surface. We investigate the surface error of the freeform mirror fabricated by diamond turning machine to analyze the realistic tendency of the error. The surface error with 0.22 ㎛ root-mean-square value is fitted to the Zernike terms using the incremental fitting method, which increases the number of the fitting coefficients through steps. Furthermore, optical performance via surface error pattern based on Zernike terms is studied to see the influences of each term. With this study, realistic error surface generation may allow higher accuracy not only for the feasibility test but also for all tests and predictions using optical simulations.

  • PDF

Confocal off-axis optical system with freeform mirror, application to Photon Simulator (PhoSim)

  • Kim, Dohoon;Lee, Sunwoo;Han, Jimin;Park, Woojin;Pak, Soojong;Yoo, Jaewon;Ko, Jongwan;Lee, Dae-Hee;Chang, Seunghyuk;Kim, Geon-Hee;Valls-Gabaud, David;Kim, Daewook
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.75.2-76
    • /
    • 2021
  • MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.

  • PDF

Construction of 3D Earth Optical Model for Earth Remote Sensing (Amon-Ra) Instrument at L1 Halo Orbit

  • Ryu, Dong-Ok;Seong, Se-Hyun;Hong, Jin-Suk;Kim, Sug-Whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • We present construction of 3D Earth optical Model for in-orbit performance prediction of L1 halo orbiting earth remote sensing instrument; the Albedo Monitor and Radiometer (Amon-Ra) using Integrated Ray Tracing (IRT) computational technique. The 3 components are defined in IRT; 1) Sun model, 2) Earth system model (Atmosphere, Land and Ocean), 3)Amon-Ra Instrument model. In this report, constructed sun model has Lambertian scattering hemisphere structure. The atmosphere is composed of 16 distributed structures and each optical model includes scatter model with both reflecting and transmitting direction respond to 5 deg. intervals of azimuth and zenith angles. Land structure model uses coastline and 5 kinds of vegetation distribution data structure, and its non-Lambertian scattering is defined with the semi-empirical "parametric kernel method" used for MODIS (NASA) missions. The ocean model includes sea ice cap with the sea ice area data from NOAA, and sea water optical model which is considering non-Lambertian sun-glint scattering. The IRT computation demonstrate that the designed Amon-Ra optical system satisfies the imaging and radiometric performance requirement. The technical details of the 3D Earth Model, IRT model construction and its computation results are presented together with future-works.

  • PDF