• Title/Summary/Keyword: Optical sheet

Search Result 486, Processing Time 0.027 seconds

Effects of Sb doping on the Characteristis of $SnO_2$ Transparent Electrodes ($SnO_2$ 수용전극특성에 미치는 Sb첨가의 영향)

  • 이정한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.3
    • /
    • pp.16-21
    • /
    • 1976
  • Transparent eloctroaes of polycrystalline till-oxide films doped with antimony are prepared on the substrate of microscopic cover g1ass by modified spray method and from SnCl4 Solution. Their electrical and optical properties are investigated in relation to the surface temperature of the substrate glass and to antimony concentration in the starting materials. The sheet.resiststrace of the film electrodes and transmittance for incandescent light depen on tile antimony concentration and surface temperature of substrates at the time of making films. The transmittance increases with decrease of sheet resistance of the film. The optimum sheet.resistance was obtianed in the case of the antimony concentration 0.6(%) approximately , and the max. transmittance was 93(%).

  • PDF

Study of PLF-Prism sheet combination photo-luminescent film and prism sheet in blue LED BLU (청색 LED BLU에서 결합된 광 여기필름과 프리즘 시트의 연구)

  • Kim, Du-Hui;Im, Yeong-Rak;HwangBo, Chang-Gwon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.449-450
    • /
    • 2008
  • 본 연구에서 우리는 4축 회전이 가능한 휘도측정기를 가지고 확산판 대신, PLF를 사용한 edge형 BLU의 광시야각, 휘도 및 스펙트럼을 측정하였다. 이에 따라, 우리는 조명설계 프로그램 'LightTools'을 이용하여 PLF와 프리즘 시트가 최적화 되도록 설계하여 분석하였다.

  • PDF

Electrical and Optical Properties of Semitransparent Metal Electrodes for Top-emission Organic Light-emitting Diodes (전면 발광 유기 발광 소자용 반투명 금속의 전기적 및 광학적 특성)

  • Shin, Eun-Chul;An, Hui-Chul;Kim, Tae-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.938-942
    • /
    • 2008
  • Electrical and optical properties of semitransparent Ag and Al layer were studied, which are used for the electrodes in top-emission organic light-emitting diodes. Sheet resistance and transmittance of visible light through a thin layer were measured and analyzed. Several thin metal layers of Ag and Al were deposited onto a glass substrate up to a thickness of 50 nm using a thermal evaporation. Sheet resistance measurements show that a layer thickness is needed more than 15 nm and 20 nm for Ag and Al, respectively, when a proper sheet resistance is assumed to be less than $50{\Omega}/sq$. From the measurements of transmittance of visible light through a thin-metal layer, metallic behavior was observed when the layer thickness is over 25 nm for both films. Thus, from a study of sheet resistance and transmittance of visible light, a minimum proper thickness of semitransparent metal layer is 20 nm and 25 nm for Ag and Al, respectively.

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

A study of the determination of off-set position for Nd:YAC laser welding between SCP steel sheet and STS304 sheet (Nd:YAG 레이저빔을 이용한 SCP 강판과 STS304강판 용접시 오프셋(off-set) 위치 결정에 관한 연구)

  • Yoon B. S.;Kim T. H.;Park G. Y.;Lee G. D.
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2004
  • This work was attempted to join SCP sheet and STS304 sheet by using Nd:YAC laser beam. SCP sheet has good formability and low cost, while STS304 has excellent corrosion resistance and mechanical properties in high temp. In this experiment, butt joint type was used to develop the tailored blank welding for dissimilar steel. Sheets which have different thermal properties. Computer simulation was conducted to obtain the off-set position for efficient welding by considering laser power, scanning speed, focal length and basic properties. The result showed that the optimum thermal distribution was obtained when the laser beam was irradiated at $0.05{\sim}0.1$ mm off-set toward the SCP sheet side. The experiment was conducted based on the result of computer simulation to show the same optimum conditions. Optimum conditions were 3KW in laser beam power, 6m/min in scanning speed, -0.5mm in focal position, 0.1mm off-set toward SCP. Microhardness test, tensile test, bulge test, optical microscopy, EDS, and XRD were performed to observe the microstructure around fusion zone and to evaluate the mechanical properties of optimum conditions, The weld zone had high microhardness values by the formation of the martensitic structure. Tensile test measured the strength of welded region by vertical to strain direction and the elongation of welded region by parallel to strain direction. Bulge test showed $52\%$ formability of the original materials. Bead shape, grain size, and martensitic structure were observed by the optical microscopy in the weld zone. Detailed results of EDS, XRD confirmed that the welded region was connected of martensitic structure.

  • PDF

A Study on the Shear Deformation Behavior of Inner Structure-Bonded Sheet Metal (접합판재의 전단 변형거동에 관한 연구)

  • Kim J. Y.;Chung W. J.;Yang D. Y.;Kim J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.257-262
    • /
    • 2005
  • In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

A Study on the Shear Deformation Behavior of Inner Structure-Bonded sheet metal (접합판재의 전단 변형거동에 관한 연구)

  • Kim J. Y.;Kim J. H.;Chung W. J.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.33-38
    • /
    • 2004
  • In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

  • PDF

The Influence of Al Underlayer on the Optical and Electrical Properties of GZO/Al Thin Films

  • Kim, Sun-Kyung;Kim, So-Young;Kim, Seung-Hong;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil;Choi, Dong-Hyuk;Son, Dong-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.321-323
    • /
    • 2013
  • 100 nm thick Ga doped ZnO (GZO) thin films were deposited with DC and RF magnetron sputtering at room temperature on glass substrate and Al coated glass substrate, respectively. and the effect of the Al underlayer on the optical and electrical properties of the GZO films was investigated. As-deposited GZO single layer films had an optical transmittance of 80% in the visible wavelength region, and sheet resistance of 1,516 ${\Omega}/{\Box}$, while the optical and electrical properties of GZO/Al bi-layered films were influenced by the thickness of the Al buffer layer. GZO films with 2 nm thick Al film show a lower sheet resistance of 990 ${\Omega}/{\Box}$, and an optical transmittance of 78%. Based on the figure of merit (FOM), it can be concluded that the thin Al buffer layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.