• Title/Summary/Keyword: Optical security

Search Result 230, Processing Time 0.019 seconds

One-time Pattern Mutual Authentication Method by using Digital Holography (디지털 홀로그래피를 이용한 one-time pattern 상호 인증 방법)

  • Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.291-294
    • /
    • 2016
  • A new optical one-time pattern password(OTPT) mutual authentication method is proposed, which presents a two-factor authentication by 2-step phase-shifting digital holography and performs a two-way authentication by a challenge-response handshake of the optical OTPT in both directions. Because a client and a server use OTPT once as a random number and encrypt it for mutual authentication, it protects against a replay or a man-in-the middle attack and results in higher security level.

Development of Optical Burst Switching System for Next Generation Internet Services (차세대 인터넷 서비스를 위한 광버스트 교환 노드 설계)

  • Jang, Hee-Seon;Shin, Hyeun-Cheul;Aum, Ki-Chul;Lee, Sung-Hoon
    • Convergence Security Journal
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • In this paper, the development specification of the optical burst switching system (OBS) for next generation internet services is presented. The development specification includes the number of input/output nodes, the number of wavelengths, buffer capacity, the capacity/queue size of the controller and maximum burst assembly delay. From the performance parameters related to the OBS design, an mathematical model to maximize the throughput and minimize the data loss is presented, and then efficient heuristic algorithm is also presented to analyze the sensitivity of the system parameters.

  • PDF

Optical Encryption Scheme for Cipher Feedback Block Mode Using Two-step Phase-shifting Interferometry

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.155-163
    • /
    • 2021
  • We propose a novel optical encryption scheme for cipher-feedback-block (CFB) mode, capable of encrypting two-dimensional (2D) page data with the use of two-step phase-shifting digital interferometry utilizing orthogonal polarization, in which the CFB algorithm is modified into an optical method to enhance security. The encryption is performed in the Fourier domain to record interferograms on charge-coupled devices (CCD)s with 256 quantized gray levels. A page of plaintext is encrypted into digital interferograms of ciphertexts, which are transmitted over a digital information network and then can be decrypted by digital computation according to the given CFB algorithm. The encryption key used in the decryption procedure and the plaintext are reconstructed by dual phase-shifting interferometry, providing high security in the cryptosystem. Also, each plaintext is sequentially encrypted using different encryption keys. The random-phase mask attached to the plaintext provides resistance against possible attacks. The feasibility and reliability of the proposed CFB method are verified and analyzed with numerical simulations.

Secret-key-sharing Cryptosystem Using Optical Phase-shifting Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.119-127
    • /
    • 2019
  • A new secret-key-sharing cryptosystem using optical phase-shifting digital holography is proposed. The proposed secret-key-sharing algorithm is based on the Diffie-Hellman key-exchange protocol, which is modified to an optical cipher system implemented by a two-step quadrature phase-shifting digital holographic encryption method using orthogonal polarization. Two unknown users' private keys are encrypted by two-step phase-shifting digital holography and are changed into three digital-hologram ciphers, which are stored by computer and are opened to a public communication network for secret-key-sharing. Two-step phase-shifting digital holograms are acquired by applying a phase step of 0 or ${\pi}/2$ in the reference beam's path. The encrypted digital hologram in the optical setup is a Fourier-transform hologram, and is recorded on CCDs with 256 quantized gray-level intensities. The digital hologram shows an analog-type noise-like randomized cipher with a two-dimensional array, which has a stronger security level than conventional electronic cryptography, due to the complexity of optical encryption, and protects against the possibility of a replay attack. Decryption with three encrypted digital holograms generates the same shared secret key for each user. Schematically, the proposed optical configuration has the advantage of producing a kind of double-key encryption, which can enhance security strength compared to the conventional Diffie-Hellman key-exchange protocol. Another advantage of the proposed secret-key-sharing cryptosystem is that it is free to change each user's private key in generating the public keys at any time. The proposed method is very effective cryptography when applied to a secret-key-exchange cryptosystem with high security strength.

Multiple-image Encryption and Multiplexing Using a Modified Gerchberg-Saxton Algorithm in Fresnel-transform Domain and Computational Ghost Imaging

  • Peiming Zhang;Yahui Su;Yiqiang Zhang;Leihong Zhang;Runchu Xu;Kaimin Wang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.362-377
    • /
    • 2023
  • Optical information processing technology is characterized by high speed and parallelism, and the light features short wavelength and large information capacity; At the same time, it has various attributes including amplitude, phase, wavelength and polarization, and is a carrier of multi-dimensional information. Therefore, optical encryption is of great significance in the field of information security transmission, and is widely used in the field of image encryption. For multi-image encryption, this paper proposes a multi-image encryption algorithm based on a modified Gerchberg-Saxton algorithm (MGSA) in the Fresnel-transform domain and computational ghost imaging. First, MGSA is used to realize "one code, one key"; Second, phase function superposition and normalization are used to reduce the amount of ciphertext transmission; Finally, computational ghost imaging is used to improve the security of the whole encryption system. This method can encrypt multiple images simultaneously with high efficiency, simple calculation, safety and reliability, and less data transmission. The encryption effect of the method is evaluated by using correlation coefficient and structural similarity, and the effectiveness and security of the method are verified by simulation experiments.

Design of 2-dimensional trackling optical receiver systems for optical wireless mobile communications (광 무선 이동통신용 2차원 추적 광학 수신계 설계)

  • Park, Seung-Hyun;Lee, Dong-Suk;Kim, Kyung-Hun;Lee, Ill-Hang
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.28-29
    • /
    • 2004
  • Optical wireless mobile communications have the potential to provide wide bandwidth and security . We have proposed and designed the 2-dimensional tracking optical receiver systems for optical wireless mobile communication. The receiver system consist of 4${\times}$4 photodiode array can receive optical signal from the transmitter. The room size is 5${\times}$5m$^2$ and the room height is 3m.

  • PDF

Optical security system for protection of personal identification information (개인신원정보 보호를 위한 광 보호 시스템)

  • 윤종수;도양회
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.383-391
    • /
    • 2003
  • A new optical security system for the protection of personal identification information is proposed. Personal identification information consisting of a pure face image and an identification number is used for verification and authentication. Image encryption is performed by a fully phase image encryption technique with two random phase masks located in the input and the Fourier plane of 4-f correlator. The personal information, however, can be leaked out in the decryption process. To cope with this possibility, the encrypted image itself is used in the identification process. An encrypted personal identification number is discriminated and recognized by using the proposed MMACE_p (multiplexed MACE_p) filter, and then authenticity of the personal information is verified by correlation of the face image using the optical wavelet matched filter (OWMF). MMACE_p filter is a synthetic filter with four MACE_p (minimum average correlation energy_phase encrypted) filters multiplexed in one filter plane to recognize 10 different encrypted-numbers at a time. OWMF can improve discrimination capability and SNR (signal to noise ratio). Computer simulations confirmed that the proposed security technique can be applied to the protection of personal identification information.

Interface Effect Analysis between Undersea Fiber Optic Cable and Underwater Acoustic channel (수중 음향 채널의 해저 광케이블 간섭 효과 분석)

  • Im, Yo-Wung;Lim, Pil-Sub;Lee, Jeong-Gu;Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.979-986
    • /
    • 2015
  • Security solutions using fiber-optic cable have not yet secured a solid technical stability, through which the Acoustic detection security system also did not have a complete defense techniques such as false alarm and detecting fail due to a number of variables. In this paper, we investigate 4 characteristics for the channel of underwater acoustic communication. We also construct detection system as a construction method for security system using optical cable through the analysis of acoustic signal in underwater. We perform analysis of signal characteristics and noise of underwater optical cable, and then we confirms the possibility of real application.

A Study of Aspheric Mirror Optical Design to Improve Luminous Intensity Uniformity of LED Security Lights (LED 보안등의 광균일도 향상을 위한 비구면 Mirror형 광학 설계에 관한 연구)

  • Jung, In-Ho;Yoon, Cheol-Yong;Ye, In-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.114-119
    • /
    • 2011
  • There is a limit to technology of improving luminous intensity uniformity and glare, known as a weakness of existing LED lamp. Because of Using many LED, LED lamp not only waste energy but have bad effect on efficiency. Our goal is to develop security lights solution which is contented with suitable area in KS(Korean Industrial Standards) and to remove glare by combining asphere in optical system with different concept. To improve luminous intensity uniformity, a reflect mirror system was used after an aspheric optical system design for this study. We made a mirror and measured it after analysing luminance changes depend on aspheric shapes with simulation program to see if aspheric shapes effect luminance distribution. We made progress to find problems and improve them by comparing measured data and analysed data. This result of the study will contribute to industry of LED lighting through developing solution of emotional illumination of LED security lights by knowing the importance of reflectivity with this study and improving luminous intensity uniformity with solving the problem.

Study on Development of Automation System for Non-Contact Counting of ID Card (비접촉 ID카드 계수를 위한 자동화 시스템 개발)

  • Kang, Dae-Hwa;Hong, Jun-Hee;Guo, Yang-Yang;Lee, Hyok-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.652-657
    • /
    • 2013
  • In this study, we developed a counting method for non-contact ID cards using an optical fiber displacement sensor instead of the traditionally used friction counting method. The proposed method has the advantage of high speed and automated measurement. For counting non-contact ID cards, an H-type optical fiber sensor, jig part, and counting program are developed separately to build the system and adjust it. Through the experimental test results, it was confirmed that counting is possible with one type of international ID card and one type of financial security card based on ISO7810. Furthermore, by applying the proposed method to 100 ID cards 100 times repeatedly, it was confirmed that it has high accuracy and an error ratio of 0%. We experimentally demonstrated that the proposed counting method for non-contact ID cards using an optical fiber displacement sensor can perform measurements with high accuracy and high speed.