• Title/Summary/Keyword: Optical path difference

Search Result 60, Processing Time 0.03 seconds

A Single Cell Gap Transflective LCD in a Patterned Vertically Aligned Mode

  • Lee, You-Jin;Lee, Tae-Hee;Kim, Hak-Rin;Choi, Yoon-Seuk;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.743-746
    • /
    • 2006
  • We have demonstrated a transflective liquid crystal display (LCD) with a single cell gap in a patterned vertically aligned mode. In our configuration, the different electrode structure in a transmissive and a reflective part was suggested to compensate an optical path difference of each region. As the result, the similar electro-optic characteristic of each region was obtained which results in an enhanced performance of the device. Moreover, suggested technique can be highly effective to realize the practical transflective LCD due to the simple fabrication process.

  • PDF

Ultra-precision Positioning By Using Coherence of White Light (백색광의 제한 간섭성을 이용한 초정밀 위치결정)

  • Park, Hyun-Goo;Kang, Min-Gu;Kim, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.995-1001
    • /
    • 1997
  • In this paper, a new positioning method with incoherence of white light is described and practically implemented to attach VCR heads on a drum very accurately. This method utilizes the Michelson Interferometer which uses white light with short coherence length as the light source to generate interference fringes only in case the optical path difference is shorter than about 2.mu.m. The course position of VCR heads and the fine are determined by appearance and visibility of interference fringes, respectively. The appearance are detected by an image processing technique using FFT(Fast Fourier Transform).

A study of the light trapping mechanism in periodically honeycomb texture-etched substrate for thin film silicon solar cells

  • Kim, Yongjun;Shin, Munghun;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.147.2-148
    • /
    • 2016
  • Light management technology is very important for thin film solar cells, which can reduce optical reflection from the surface of thin film solar cells or enhance optical path, increasing the absorption of the incident solar light. Using proper light trapping structures in hydrogenated amorphous silicon (a-Si:H) solar cells, the thickness of absorber layers can be reduced. Instead, the internal electric field in the absorber can be strengthened, which helps to collect photon generated carriers very effectively and to reduce light-induced loss under long-term light exposure. In this work, we introduced a chemical etching technology to make honey-comb textures on glass substrates and analyzed the optical properties for the textured surface such as transmission, reflection and scattering effects. Using ray optics and finite difference time domain method (FDTD) we represented the behaviors of light waves near the etched surfaces of the glass substrates and discussed to obtain haze parameters for the different honey-comb structures. The simulation results showed that high haze values were maintained up to the long wavelength range over 700 nm, and with the proper design of the honey-comb structure, reflection or transmission of the glass substrates can be enhanced, which will be very useful for the multi-junction (tandem or triple junction) thin film a-Si:H solar cells.

  • PDF

Analysis of the Digital Phase Tracking Technique for Fiber-Optic Gyroscope (광섬유 자이로스코프의 위상추적 신호처리 분석)

  • Yeh, Y.H.;Cho, S.M.;Kim, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.95-105
    • /
    • 1997
  • A new open-loop signal processing technique of digital phase tracking is known to have a Potential to solve the problems in the open-loop processor such as limited dynamic range, dependence on the optical intensity fluctuations, and dependence on gain fluctuations of signal path. But new problems with digital phase tracking must be solved before it can be a useful signal processing method. In this paper, barriers to the success of the digital phase tracking such as harmonics content, phase difference, amplitude variations of the phase modulation(PM) signal, bandwidth limit of the signal path, and the implementation of the mixer, are pointed out and their effects on the performance of the signal processor are analyzed to calculate the requirements of the signal processor for $1{\mu}rad$-grade FOG.

  • PDF

Compensation of the Straightness Measurement Error in the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • Khim Gyungho;Keem Tae-Ho;Lee Husang;Kim Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.

Synthesis of an On-Line 5 Degrees of Freedom Error Measurement System for Translational Motion Rigid Bodies (병진운동 강체의 온라인 5자유도 운동오차 측정시스템 설계 및 해석)

  • 김진상;정성종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.93-99
    • /
    • 1998
  • Although laser interferometer measurement system has advantages of measurement range and accuracy, it has some disadvantages when measurement of multi degrees of freedom of motion are required. Because the traditional error measurement methods for geometric errors (two straightness and three angular errors) of a slide of machine tools measures error components one at a time. It may also create an optical path difference and affect the measurement accuracy. In order to identify and compensate for geometric errors of a moving rigid body in real time processes, an on-line error measurement system for simultaneous detection of the five error components of a moving object is required. Using laser alignment technique and some optoelectronic components, an on-line measurement system with 5 degrees of freedom was developed for the geometric error detection in this study Performance verification of the system has been performed on an error generating mechanism. Experimental results show the feasibility of this system for identifying geometric errors of a slide of machine tools.

  • PDF

Optimal Dispersion Condition to Distinguish OPD Directions of Spectrally-Resolved Interferometry (방향 판별 분산간섭계의 최적 분산 조건 연구)

  • Yun, Young Ho;Kim, Dae Hee;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.259-264
    • /
    • 2017
  • Spectrally resolved interferometry (SRI) is an attractive technique to measure absolute distances without any moving components. In the spectral interferogram obtained by a spectrometer, the optical path difference (OPD) can simply be extracted from the linear slope of the spectral phase. However, SRI has a fundamental measuring range limitation due to maximum and minimum measurable distances. In addition, SRI cannot distinguish the OPD direction because the spectral interferogram is in the form of a natural sinusoidal function. In this investigation, we describe a direction determining SRI and propose the optimal conditions for determining OPD direction. Spectral phase nonlinearity, caused by a dispersive material, effects OPD direction but deteriorates spectral interferogram visibility. In the experiment, various phase nonlinearities were measured by adjusting the dispersive material (BK7) thickness. We observed the interferogram visibility and the possibility of direction determination. Based on the experimental results, the optimal dispersion conditions are provided to distinguish OPD directions of SRI.

Design and Analysis of Mach-Zehnder-Interferometer-Based Silica Planar Lightwave Circuit Triplexer (마하젠더 간섭계로 구성된 실리카 평판 광 도파회로 트라이플렉서의 설계 및 분석)

  • Lee, Tae-Hyung;Lee, Dong-Hyun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.447-451
    • /
    • 2007
  • A triplexer based on a silica planar lightwave circuit Mach-Zehnder nterferometer(MZI) is proposed and its characteristics are analyzed through simulations. To separate 1310 nm band and $1480{\sim}1560nm$ band properly, the path length difference of an MZI is set to be the multiple and half of the wavelength 1310 nm and the balance of the directional coupler is optimized in the $1480{\sim}1560nm$ band. The same MZI is additionally cascaded to provide good crosstalk characteristics. The 1490 nm band and 1550 nm band are further separated using additional two stage MZI's. A three-dimensional BPM and transfer matrix method analysis predicts the low crosstalk characteristics and the fabrication-error-tolerance of the proposed triplexer.

Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3-SrCO3-TeO2-ZnO glass series

  • Hammam Abdurabu Thabit;Abd Khamim Ismail;M.I. Sayyed;S. Hashim;I. Abdullahi;Mohamed Elsafi;K. Keshavamurthy;G. Jagannath
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.247-256
    • /
    • 2024
  • The glass series modified by tungsten oxide was created using the compounds (75-x) B2O3- 10SrCO3- 8TeO2- 7ZnO - xWO3, where x = 0, 1, 5, 10, 22, 27, 34, and 40% mole percentage. A UV-visible spectrophotometer and thermogravimetric-differential thermal analysis (TG-DTA) methods were employed to characterize the specimen's optical and phase transition attributes, respectively. The mass-attenuation coefficient (AC) of all created glasses from BSTZW0 to BSTZ7 was estimated using Geant4 code from 0.05 to 3 MeV and compared to the XCOM software results, with a relative difference of less than 2% between the two results. The increase of WO3 percentage lead to an increase in the Linear-AC at each studied energy, and this is mainly due to the fact that the higher the percentage of WO3 in the glass increases its density which causes an increase in the Linear-AC, so an energy of 0.06 MeV, as an example, the values of the Linear-AC was 4.009, 4.509, 5.442, 6812, 8.564, 9.856, 10.999 and 11.628 cm-1 form BSTZW0 too BSTZW7, respectively. The Half-VL (value layer), Mean-FP (free path), Tenth-VL, and Radiation attenuation performance (RAP) were also calculated for the current BSTZW-glass samples and revealed that BSTZW7 had the best gamma ray attenuation performance at all discussed energies when compared to other studied glass samples.

Fabrication of a Mach-Zehnder interferometer for education using a rotating glass plate and a 3D printer (회전 유리판과 3D 프린터를 이용한 교육용 마흐젠더 간섭계 제작)

  • Jang, Seong-Hun;Ju, Young-G
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes how to fabricate an educational Mach-Zehnder interferometer that is easy to align and inexpensive, using 3D printers and semiconductor lasers. The interferometer consists of a body $165mm{\times}120mm{\times}57mm$ in size, mirror mounts, a laser holder, beam splitters, and so on. The laser path is adjusted by 4 mirror mounts, each comprised of rubber bands, small metal wires, and a screw. The interference fringe is enlarged by the lens at the final stage. The refractive index of a slide glass was measured by counting the number of moving interference fringes while the slide glass, inserted into one of the two interferometer arms, is rotating. The formula for the refractive index as a function of the optical-path difference and rotation angle was obtained, and used to calculate the refractive index of glass from the interferometer experiment. The use of a rotating glass in one arm of the interferometer nullifies the need for a precision stage, which despite its high cost is often required to observe the moving interference fringe in the classroom. Therefore, the 3D-printed Mach-Zehnder interferometer proposed in this paper can be very useful for education, because of its affordability and performance. It enables students to perform both qualitative and quantitative studies using a 3D-printed interferometer, such as measuring the refractive index of a glass sample, and the wavelength of light.