• Title/Summary/Keyword: Optical materials

Search Result 4,103, Processing Time 0.037 seconds

Organic nonlinear optic materials for intergated optics and optical teclecommunications (집적광학과 광통신을 위한 비선형광학 유기물질)

  • 윤촌섭
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.07a
    • /
    • pp.5-8
    • /
    • 1991
  • New nonliner organic materials have been developed for all-optical signal processing. The organic materials possess many interesting features for this purpose. Unlike inorganic molecules the delocalized $\pi$-electron distribution and intramolecular charge transfer mevhanism allows certain organic molecules to respond highly anharmonically to an external field. In the present paper the origins of nonlinear phenomena, advantages of orgnic materials and structures of organic devices will be discussed.

  • PDF

Tuned Optical Reflection Characteristics of Chemically-Treated Ti Substrates

  • Yun, Ho-Gyeong;Kim, Myoung;You, In-Kyu
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.954-957
    • /
    • 2012
  • Titanium foils for use in photoelectrochemical devices are treated with a $HNO_3$-HF solution. After this treatment, the optical reflection characteristics of the Ti substrates are markedly increased in terms of not only reflectivity but also optimized wavelength. Furthermore, the "multiple beam interference" theory and optical analysis of surface morphologies clearly verify the origin of the optimized optical reflection properties.

Periodically poled stoichiometric lithium tantalate for optical parametric oscillation (주기적으로 분극반전된 stoichiometric $LiTaO_3$ 이용한 광매게발생)

  • Lee, Yu-Nan;Sunao Kurimuyn;Masaru Nakamura;Kenii Kitamura
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.228-229
    • /
    • 2003
  • The quasi-phase matching (QPM) technique has dramatically changed the guidelines in developing nonlinear optical materials, which doesn't require birefringence and off-diagonal components for efficient wavelength conversion. Minimum requirement for QPM is the modulation of nonlinearity and ferroelectric materials with low coercive field has become fascinating in periodical poling. Stoichiometric lithium tantalate (SLT) has attractive advantages of low coercive field (∼l .5 KV/mm), high nonlinearity, high optical damage resistance and low thermo-optic coefficients, leading to a large aperture QPM devices for high power operation. (omitted)

  • PDF

Reconfigurable Optical Add-Drop Multiplexer Using a Polymer Integrated Photonic Lightwave Circuit

  • Shin, Jang-Uk;Han, Young-Tak;Han, Sang-Pil;Park, Sang-Ho;Baek, Yong-Soon;Noh, Young-Ouk;Park, Kang-Hee
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.770-777
    • /
    • 2009
  • We have developed a fully functional reconfigurable optical add-drop multiplexer (ROADM) switch module using a polymer integrated photonic lightwave circuit technology. The polymer variable optical attenuator (VOA) array and digital optical switch array are integrated into one polymer PLC chip and packaged to form a 10-channel VOA integrated optical switch module. Four of these optical switch modules are used in the ROADM switch module to execute 40-channel switching and power equalization. As a wavelength division multiplexer (WDM) filter device, two C-band 40-channel athermal arrayed waveguide grating WDMs are used in the ROADM module. Optical power monitoring of each channel is carried out using a 5% tap PD. A controller and firmware having the functions of a 40-channel switch and VOA control, optical power monitoring, as well as TEC temperature control, and data communication interfaces are also developed in this study.

Advanced crystal growth for the development of new optical materials

  • Fukuda, Tasuguo;Shimamura, Kiyoshi
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.38-74
    • /
    • 1996
  • Recently, the development of new crystal materials for optical applications has become a focus of considerable interest because of the progress of optoelectronic technologies. We have carried out investigations focussing on the development of new optical and electrical materials, by systematic investigations of advanced crystal growth techniques. Here, research and progress in development of new materials and crystal growth techniques is reviewed.

  • PDF

Recent development of polymer optical circuits for the next generation fiber to the home system

  • Kaino, Toshikuni
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.13-14
    • /
    • 2006
  • The use of soft-lithography instead of standard photolithography and dry etching technologies is attractive because inexpensive optical device can be realized. Polymerization using multi-photon absorption of materials is also a good method for optical waveguide fabrication. Laser induced self-writing technology of optical waveguide is also very simple and attractive. Using these processes, we can fabricate and interconnect optical circuits at once. In this presentation, several simple fabrication methods will be introduced. New optical loss evaluation method for polymer optical waveguides will also be presented

  • PDF

Chalcogenide Ge-Sb-Se Optical and Crystallization Characteristics for Basic a Planning Aspheric Lens (비구면렌즈 설계를 위한 칼코게나이드 Ge-Sb-Se 광학계 및 결정화 특성 연구)

  • Myung, Tae Sik;Ko, Jun Bin
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.598-603
    • /
    • 2016
  • The recent development of electro-optic devices and anticorrosion media has led to the necessity to investigate infrared optical systems with solid-solid interfaces of materials that often have the characteristic of amorphousness. One of the most promising classes of materials for those purposes seems to be the chalcogenide glasses. Chalcogenide glasses, based on the Ge-Sb-Se system, have drawn a great deal of attention because of their use in preparing optical lenses and transparent fibers in the range of 3~12 um. In this study, amorphous Ge-Sb-Se chalcogenide for application in an infrared optical product design and manufacture was prepared by a standard melt-quenching technique. The results of the structural, optical and surface roughness analysis of high purity Ge-Sb-Se chalcogenide glasses are reported after various annealing processes.

Simple Graphical Selection of Optical Materials for an Athermal and Achromatic Design Using Equivalent Abbe Number and Thermal Glass Constant

  • Kim, Young-Ju;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.182-187
    • /
    • 2015
  • This paper presents a new graphical method for selecting a pair of optical glasses to simultaneously achromatize and athermalize an imaging lens made of materials in contact. An athermal glass map that plots thermal glass constant versus inverse Abbe number is derived through analysis of optical glasses and plastic materials in visible light. By introducing the equivalent Abbe number and equivalent thermal glass constant, although it is a multi-lens system, we have a simple way to visually identify possible optical materials. Applying this method to design a phone camera lens equipped with quarter inch image sensor having 8-mega pixels, the thermal defocuses over $-20^{\circ}C$ to $+60^{\circ}C$ are reduced to be much less than the depth of focus of the system.

Crosstalk-Enhanced DOS Integrated with Modified Radiation-Type Attenuators

  • Han, Young-Tak;Shin, Jang-Uk;Park, Sang-Ho;Han, Sang-Pil;Lee, Chul-Hee;Noh, Young-Ouk;Lee, Hyung-Jong;Baek, Yong-Soon
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.744-746
    • /
    • 2008
  • This letter presents a crosstalk-enhanced polymer thermo-optic digital optical switch operating at a low power consumption. Modified radiation-type attenuators are integrated in a series with a conventional $1{\times}2$ digital optical switch. A low optical crosstalk of less than -45 dB is attained at a low applied switching power of 60 mW, and an insertion loss of about 1.1 dB is exhibited.

  • PDF

Tunable Photonic Band Gap Materials and Their Applications

  • Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.261-261
    • /
    • 2010
  • Photonic band gap (PBG) materials have been of great interest due to their potential applications in science and technology. Their applications can be further extended when PBG becomes tunable against various chemical and electrical stimuli. In recent, it was found that tunable photonic band gap materials can be achieved by incorporating stimuli-responsive smart gels into PBG materials. For example, the characteristic volume phase transition of gels in response to the various external stimuli including temperature, pH, ionic strength, solvent compositions and electric field were recently combined with the unique optical properties of photonic crystals to form unprecedented highly responsive optical components. Since these responsive photonic crystals are capable of reversibly converting chemical or electrical energy into characteristic optical signals, they have been considered as a good platform for label-free chemical or biological detection, actuators or optical switches as well as a model system for investigating gel swelling behavior. Herein, we report block copolymer photonic gels self-assembled from polystyrene-b-poly (2-vinyl pyridine) (PS-b-P2VP) block copolymers. In this talk, we are going to demonstrate that selective swelling of lamellar structure can be effectively utilized for fabricating PBG materials with extremely large tunability. Optical properties and their applications will be discussed.

  • PDF