• Title/Summary/Keyword: Optical loss

Search Result 971, Processing Time 0.031 seconds

Microwave Photonics Frequency-Converted Link Using Electroabsorption Devices

  • Wu, Y.;Shin, D.S.;Chang, W.S.C.;Yu, P.K.L.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.74-81
    • /
    • 2004
  • We propose a novel scheme to transmit high center frequency RF signals using electroabsorption devices (EADs) as frequency converters at the transmitter and the receiver. In this approach frequency heterodyning is employed for obtaining high center frequency. With the EAD as a detector/mixer at the receiver we demonstrated a smaller conversion loss than that of the conventional modulator/mixer. With EAD as a modulator/mixer at the transmitter and with two heterodyned lasers to generate an optical local oscillator (LO), we demonstrated a large reduction (${\sim}23dB$) in conversion loss, and the transmission is not limited by the optical saturation of the EAD. This transmission scheme has optical single-side-band transmission feature which greatly relieves the fiber dispersion effect.

Localized Eigenmodes in a Triangular Multicore Hollow Optical Fiber for Space-division Multiplexing in C+L Band

  • Hong, Seongjin;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.226-232
    • /
    • 2018
  • We propose a triangular-multicore hollow optical fiber (TMC-HOF) design for uncoupled mode-division and space-division multiplexing. The TMC-HOF has three triangular cores, and each core has three modes: $LP_{01}$ and two split $LP_{11}$ modes. The asymmetric structure of the triangular core can split the $LP_{11}$ modes. Using the proposed structures, nine independent modes can propagate in a fiber. We use a fully vectorial finite-element method to estimate effective index, chromatic dispersion, differential group delay (DGD), and confinement loss by controlling the parameters of the TMC-HOF structure. We confirm that the proposed TMC-HOF shows flattened chromatic dispersion, low DGD, low confinement loss, low core-to-core crosstalk, and low crosstalk between adjacent modes. The proposed TMC-HOF can provide a common platform for MDM and SDM applications.

Fabrication and Characteristics of Plastic Optical Fiber Directional Couplers

  • Kim Dae-Geun;Woo Sae Yoon;Kim Dong-Kwan;Park Seung-Han;Hwang Jin-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.99-102
    • /
    • 2005
  • Directional couplers of gradient-index plastic optical fibers were fabricated and characterized. In particular, we have employed a core-facet technique to make the directional couplers, which require mechanical side polishing and linkage. We have measured insertion loss, excess loss, and coupling ratio of the fabricated couplers as a function of polishing depth and coupling length. We found that polishing depth of $\~300{\mu}m$ and coupling length of $\~35mm$ are optimum conditions for minimizing the insertion and excess losses and for achieving 1: 1 coupling ratio.

Amplitude Modulation Response and Linearity Improvement of Directly Modulated Lasers Using Ultra-Strong Injection-Locked Gain-Lever Distributed Bragg Reflector Lasers

  • Sung, Hyuk-Kee;Wu, Ming C
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.303-308
    • /
    • 2008
  • Directly modulated fiber-optic links generally suffer higher link loss and larger signal distortion than externally modulated links. These result from the electron-photon conversion loss and laser modulation dynamics. As a method to overcome the drawbacks, we have experimentally demonstrated the RF performance of directly modulated, ultra-strong injection-locked gain-lever distributed Bragg reflector (DBR) lasers. The free-running DBR lasers exhibit an improved amplitude modulation efficiency of 12.4 dB under gain-lever modulation at the expense of linearity. By combining gain-lever modulation with ultra-strong optical injection locking, we can gain the benefits of both improved modulation efficiency from the gain-lever effect, plus improved linearity from injection locking. Using an injection ratio of R=11 dB, a 23.4-dB improvement in amplitude response and an 18-dB improvement in spurious-free dynamic range have been achieved.

Development of Optical Phase Modulator (광위상변조기 개발)

  • 김성구;윤형도;윤대원
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.97-99
    • /
    • 1998
  • A optical phase modulator of 5Gbps was fabricated on LiNbO$_3$ by Ti diffusion for optical communications. In this Paper the pigtailing, mode patterns and insertion loss were discussed. And the device Properties of driving voltage and bandwidth were measured.

  • PDF

Study on the optical line Loss Measurement and installation of Optical Drop Cables for FTTH (FTTH 를 위한 광옥외선 설치 및 특성 평가에 관한 연구)

  • Choe, Yeong-Bok;O, Ho-Seok;Park, Tae-Dong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.60-63
    • /
    • 2005
  • 본 논문은 일반주택지역에서 광단자함에서 댁내 구간에 사용되는 광케이블인 Optical Drop Cable의 설치 방법과 광학적 특성을 평가하는 방법과 이 방법에 의하여 가입자 개통에 관한 것이다.

  • PDF

Optical-Loss Measurement of a Silicon-Slab Waveguide

  • Tresna, Wildan Panji;Putra, Alexander William Setiawan;Maruyama, Takeo
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.551-557
    • /
    • 2020
  • A mirror-in-slab waveguide is fabricated on a slab waveguide by using the refractive-index contrast between two materials, with the reflection performance depending on the slab waveguide's design. In this research, a slab waveguide design consisting of silicon (Si) as the core and SiO2 as the substrate was designed and developed to determine the coupling, waveguide, and mirror losses. Based on experimental results, coupling loss is dominant and is affected by the design of the slab waveguide. Furthermore, the mirror loss is affected by the design of the mirror, such as the curvature radius and the size of the mirror. TE and TM polarizations of light are used in the measurements. The experimental results show that mirror losses due to reflection by mirrors are 0.011 dB/mirror and 0.007 dB/mirror for TE and TM polarizations respectively. A simulation was performed to confirm whether the size of mirror is sufficient to reflect the input light, and to check the quality of the surfaces of fabricated mirrors.

Propagation Characteristics and Tolerance Analysis of Optical Wires in Flexible Optical PCB by Ray Tracing (연성 광 PCB용 광 배선의 손실특성 및 제작 공차 분석)

  • Yeom, Jun-Cheol;Park, Dae-Seo;Kim, Young-Seok;Kim, Dae-Chan;Park, Se-Geun;O, Beom-Hoan;Lee, El-Hang;Lee, Seung-Gol;Jeon, Keum-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.255-261
    • /
    • 2008
  • In this study, the propagation characteristics and the fabrication tolerance of an optical wire in a flexible optical PCB were analyzed by using a ray-tracing method. It is found from the analysis that the sidewall angle of a core should be controlled within $1^{\circ}$ in order to maintain the propagation loss to less than -1 dB/mm, and that the bending radius of the optical wire should be larger than 5 mm in order to suppress the bending loss below -1 dB. In addition, it is confirmed that the lateral misalignment of ${\pm}15\;{\mu}m$, and the angular tilting of VCSEL of $6^{\circ}$ are allowable for the coupling loss of -1 dB.