• Title/Summary/Keyword: Optical image encryption

Search Result 87, Processing Time 0.024 seconds

An Implementation of Stable Optical Security System using Interferometer and Cascaded Phase Keys (간섭계와 직렬 위상 키를 이용한 안정한 광 보안 시스템의 구현)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, we proposed an stable optical security system using interferometer and cascaded phase keys. For the encryption process, a BPCGH(binary phase computer generated hologram) that reconstructs the origial image is designed, using an iterative algorithm and the resulting hologram is regarded as the image to be encrypted. The BPCGH is encrypted through the exclusive-OR operation with the random generated phase key image. For the decryption process, we cascade the encrypted image and phase key image and interfere with reference wave. Then decrypted hologram image is transformed into phase information. Finally, the origianl image is recovered by an inverse Fourier transformation of the phase information. During this process, interference intensity is very sensitive to external vibrations. a stable interference pattern is obtained using self-pumped phase-conjugate minor made of the photorefractive material. In the proposed security system, without a random generated key image, the original image can not be recovered. And we recover another hologram pattern according to the key images, so can be used an authorized system.

  • PDF

Implementation of Stable Optical Information Security System using Interference-based Computer Generated Hologram iud $BaTiO_3$ (간섭을 기반으로한 컴퓨터형성홀로그램과 $BaTiO_3$를 이용한 안정한 광 정보보호 시스템의 구현)

  • 김철수;김종윤;박영호;김수중;조창섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8C
    • /
    • pp.827-834
    • /
    • 2003
  • In this paper, we implemented an optical information security system using computer generated hologram based on the principle of interference and BaTiO$_3$that is photorefractive material. First of all, we would generate binary phase hologram which can reconstruct the original image perfectly, and regard this hologram as the image to be encrypted. And then applying the interference rule to the hologram, encrypted and reference (fkey information) images are generated. In the decrypting process, we can get an interference intensity by interfering the reference image and the encrypted image in the Mach-Zehnder interferometer. and transforming interference intensity information into phase information using LCD(liquid crystal display) and finally recover original image by inverse Fourier transforming the phase information. In this process, the Intensity information generated by interference of two images is very sensitive to external vibrations. So, we get a stable interference using the characteristic of SPPCM(self pumped phase conjugate mirror) of BaTiO$_3$that is photorefractive material. The proposed method has an advantage of double image encryption by encrypting the hologram of the image instead of original image.

THE ANALYSIS OF THE INFLUENCE OF THE COMPRESSION ON THE LOW EARTH ORBIT SATELLITE PAYLOAD SYSTEM

  • Shin, Sang-Youn;Choi, Myung-Jin;Heo, Haeng-Pal;Yong, Sang-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.232-235
    • /
    • 2008
  • The mission of the EO(electro-optical) based low earth orbit satellite is provision of the high-resolution images required for GIS(Geographical Information Systems) establishment and the applications for environmental, agriculture and ocean monitoring. AEISS(Advanced Earth Imaging Sensor System) which is the main payload on the satellite consists of EOS(electro-optical subsystem) and PDTS(Payload Data Transmission Sub-system). IDHU(Image Data Handling Unit) which is one of the major unit in PDTS is capable of compression, storage, encryption and encoding. In this paper, the payload system of the EO based satellite is briefly introduced and the influence of the compression on AEISS is analyzed.

  • PDF

Study for the Pseudonymization Technique of Medical Image Data (의료 이미지 데이터의 비식별화 방안에 관한 연구)

  • Baek, Jongil;Song, Kyoungtaek;Choi, Wonkyun;Yu, Khiguen;Lee, Pilwoo;In, Hanjin;Kim, Cheoljung;Yeo, Kwangsoo;Kim, Soonseok
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.6
    • /
    • pp.103-110
    • /
    • 2016
  • The recent frequent cases of damage due to leakage of medical data and the privacy of medical patients is increasing day by day. The government says the Privacy Rule regulations established for these victims, such as prevention. Medical data guidelines can be seen 'national medical privacy guidelines' is only released. When replacing the image data between the institutions it has been included in the image file (JPG, JPEG, TIFF) there is exchange of data in common formats such as being made when the file is leaked to an external file there is a risk that the exposure key identification information of the patient. This medial image file has no protection such as encryption, This this paper, introduces a masking technique using a mosaic technique encrypting the image file contains the application to optical character recognition techniques. We propose pseudonymization technique of personal information in the image data.

Image Watermark Method Using Multiple Decoding Keys (다중 복호화 키들을 이용한 영상 워터마크 방법)

  • Lee, Hyung-Seok;Seo, Dong-Hoan;Cho, Kyu-Bo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.262-269
    • /
    • 2008
  • In this paper, we propose an image watermark method using multiple decoding keys. The advantages of this method are that the multiple original images are reconstructed by using multiple decoding keys in the same watermark image, and that the quality of reconstructed images is clearly enhanced based on the idea of Walsh code without any side lobe components in the decoding process. The zero-padded original images, multiplied with random-phase pattern to each other, are Fourier transformed. Encoded images are then obtained by taking the real-valued data from these Fourier transformed images. The embedding images are obtained by the product of independent Walsh codes, and these spreaded phase-encoded images which are multiplied with new random-phase images. Also we obtain the decoding keys by multiplying these random-phase images with the same Walsh code images used in the embedding images. A watermark image is then made from the linear superposition of the weighted embedding images and a cover image, which is multiplied with a new independent Walsh code. The original image is simply reconstructed by the inverse-Fourier transform of the despreaded image of the multiplication between the watermark image and the decoding key. Computer simulations demonstrate the efficiency of the proposed watermark method with multiple decoding keys and a good robustness to the external attacks such as cropping and compression.

Analysis of Characteristics of Finger-Print Recognition According to Computer Generated Hologram and Its Reconstructed Image (컴퓨터 형성 홀로그램 및 재생 영상에 따른 지문 인식 특성 분석)

  • Jeong, Man-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.76-80
    • /
    • 2009
  • Finger-print recognition is achieved by comparing an input finger-print image with the stored images in the computer, and finally by determining agreement or disagreement. Encryption and decryption are necessary in the finger-print recognition process. In these process CGH (Computer Generated Hologram) is used, and finger-print images reconstructed from the CGHs are compared. In this paper, two methods of recognition are used, one is to compare the finger-print images of each other reconstructed from their CGHs and the other is to compare the CGHs to each other directly, to analyze the differences of finger-print recognition capability between these two methods. Experimental results show that the capability of finger-print recognition for comparing the CGHs of the two is about 150 times higher than in case of comparing the reconstructed finger-print images. Especially the changes of characteristics according to modulation types of CGH are analyzed.

User Authentication System using OCR (광학문자인식을 이용한 사용자 인증 시스템)

  • Jeong, Pil-Seong;Cho, Yang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.15-22
    • /
    • 2018
  • As smart devices become popular, users can use authentication services in various methods. Authentication services include authentication using an ID and a password, authentication using a sms, and authentication using an OTP(One Time Password). This paper proposed an authentication system that solves the security problem of knowledge-based authentication using optical character recognition and can easily and quickly authenticate users. The proposed authentication system extracts a character from an uploaded image by a user and authenticates the user using the extracted character information. The proposed authentication system has the advantage of not using a password or an OTP that are easily exposed or lost, and can not be authenticated without using accurate photographs. The proposed authentication system is platform independent and can be used for user authentication, file encryption and decryption.