• Title/Summary/Keyword: Optical head tracker

Search Result 9, Processing Time 0.034 seconds

Optical Head Tracker using Pattern Matching for Initial Attitude (초기자세 획득을 위한 패턴 매칭을 이용한 광학 방식 헤드 트랙커)

  • Kim, Young-Il;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.470-475
    • /
    • 2009
  • This paper is the study which is head tracker using pattern matching. Proposal algorithm obtains initial attitude of head tracker using pattern matching. Optical head tracker consists of infrared LEDs(features) which are attached helmet as pattern, stereo infrared cameras. Proposal algorithm analyzes patterns by error rate of feature distance and estimates feature characteristic number. Initial attitude of head tracker is obtained to compare map data and feature characteristic number.

Accuracy Verification of Optical Tracking System for the Maxillary Displacement Estimation by Using of Triangulation (삼각측량기법을 이용한 광학추적장치의 상악골 변위 계측에 대한 정확성 검증)

  • Kyung, Kyu-Young;Kim, Soung-Min;Lee, Jong-Ho;Myoung, Hoon;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.41-52
    • /
    • 2012
  • Purpose: Triangulation is the process of determining the location of a point by measuring angles to it from known points at either end of a fixed baseline. This point can be fixed as the third point of a triangle with one known side and two known angles. The aim of this study was to find a clinically adaptable method for applying an optical tracking navigation system to orthognathic surgery and to estimate its accuracy of measuring the bone displacement by use of triangulation methods. Methods: In orthognathic surgery, the head position is not fixed as in neurosurgery, so that a head tracker is needed to establish the reference point on the head surface byusing an optical tracking system. However, the operation field is interfered by its bulkiness that makes its clinical use difficult. To solve this problem, we designed a method using an Aquaplast splinting material and a mini-screw in applying a head tracker on a patient's forehead. After that, we estimated the accuracy of measuring displacements of the ball marker by an optical tracking system with a conventional head tracker (Group A) and with a newly designed head tracker (Group B). Measured values of ball markers' displacements by each optical tracking system were compared with values obtained from fusion CT images for an estimation of accuracy. Results: The accuracy of the optical tracking system with a conventional head tracker (Group A) is not suitable for clinical usage. Measured and predictable errors are larger than 10 mm. The optical tracking system with a newly designed head tracker (Group B) shows 1.59 mm, 6.34 mm, and 9.52 mm errorsin threeclinical cases. Conclusion: Most errors were brought on mainly from a lack of reproducibility of the head tracker position. The accuracy of the optical tracking system with a newly designed head tracker can be a useful method in further orthognathic navigation surgery even though the average error is higher than 2.0 mm.

Verification of the Star Tracker Sun Exclusion Angle of GEO-KOMPSAT-2A Through In-Orbit Operation (천리안 2A호 별추적기 태양 차폐각 궤도상 운영 검증)

  • Kang, Woo-Yong;Baek, Kwangyul;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.243-249
    • /
    • 2021
  • The star tracker detects microscopic star light in space and compares it with a stored list of stars to calculate the satellite's position in the inertial coordinate system. If other light, such as the sun or the earth, enters the optical head, the star cannot be recognized and the star tracker cannot be operated. In particular, strong light such as the sun affects not only operation but also the performance of the star tracker. The sun exclusion angle of the star tracker is one of the important factors determining the performance of the star tracker. This paper performs the verification of the star tracker's sun exclusion angle. In order to verify the sun exclusion angle, we predict the sun exclusion time of the star tracker and compare it to the actual sun exclusion time of the GEO-KOMPSAT-2A star tracker. In addition, the performance of the star tracker is analyzed for normal operations against the sun exclusion in the optical head. It shows that the actual sun exclusion is maintained under the range of 26 degrees, the performance requirement of the star tracker, and the star tracker operates normally in spite of the sun exclusion.

Map Creation Algorithm and Initial Attitude Estimation Method for Optical Head Tracker System (광학방식 헤드 트랙커를 위한 맵 생성 알고리즘과 초기자세 추정기법)

  • Lee, Young-Jun;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.680-687
    • /
    • 2008
  • This paper presents map creation algorithm and initial attitude estimation method for the proposed optical head tracker system. The optical head tracker system consists of the IR stereo cameras and infrared LEDs as features on the helmet. In order for the stereo camera to track the luminous LEDs, it must take in to account the light radiation from the LEDs to determine the position of the center points. The proposed map creation algorithm makes map data about the position of features center points on the helmet frame. Also, initial attitude estimation method is proposed to estimate the initial attitude and position of a pilot head from the camera frame by the use of the feature pattern on the helmet. Therefore, the head motion can be expressed with respect to the body frame of a flight.

Head Tracker System Using Two Infrared Cameras (두 대의 적외선 카메라를 이용한 헤드 트랙커 시스템)

  • 홍석기;박찬국
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, an experimental optical head tracker system is designed and constructed. The system is composed of the infrared LEDs and two infrared CCD cameras to filter out the interference of another light in the limited environment like the cockpit. Then the optical head tracker algorithm is designed by using the feature detection algorithm and the 3D motion estimation algorithm. The feature detection algorithm, used to obtain the 2D position coordinates of the features on the image plane, is implemented by using the thresholding and the masking techniques. The 3D motion estimation algorithm which estimates the motion of a pilot's head is implemented by using the extended Kalman filter (EKF). Also, we used the precise rate table to verify the performance of the experimental optical head tracker system and compared the rotational performance of this system with the inertial sensor.

A Time-multiplexed 3d Display Using Steered Exit Pupils

  • Brar, Rajwinder Singh;Surman, Phil;Sexton, Ian;Hopf, Klaus
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2010
  • This paper presents the multi-user autostereoscopic 3D display system constructed and operated by the authors using the time-multiplexing approach. This prototype has three main advantages over the previous versions developed by the authors: its hardware was simplified as only one optical array is used to create viewing regions in space, a lenticular multiplexing screen is not necessary as images can be produced sequentially on a fast 120Hz LCD with full resolution, and the holographic projector was replaced with a high-frame-rate digital micromirror device (DMD) projector. The whole system in this prototype consists of four major parts: a 120Hz high-frame-rate DMD projector, a 49-element optical array, a 120Hz screen assembly, and a multi-user head tracker. The display images for the left/right eyes are produced alternatively on a 120Hz direct-view LCD and are synchronized with the output of the projector, which acts as a backlight of the LCD. The novel steering optics controlled by the multiuser head tracker system directs the projector output to regions referred to as exit pupils, which are located in the viewers’eyes. The display can be developed in the "hang-on-the-wall"form.

Analysis of Initial Activation and Checkout Results of Attitude Sensor Star Trackers for a LEO Satellite (저궤도 위성의 자세센서 별 추적기 초기 운용 분석)

  • Yim, Jo Ryeong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2012
  • This technical paper describes the analysis results of telemetry data for the initial activation of star trackers for an agile high accuracy low earth orbit satellite. The satellite was recently launched and is in the Launch and Early Operation Phases. It uses two SED36 star trackers manufactured by SODERN. The star tracker is separated by three parts, an optical head, an electronics box, and a baffle with maintaining optical head base plate temperature 20 degC in order to achieve the better performance in low frequency error. This paper presents the initial activation status, requirements and performance, anomaly occurrence, and noise equivalent angle performance analysis during the mission mode by processing the telemetry data.

Implementation of a Helmet Azimuth Tracking System in the Vehicle (이동체 내의 헬멧 방위각 추적 시스템 구현)

  • Lee, Ji-Hoon;Chung, Hae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • It is important to secure the driver's external field view in armored vehicles surrounded by iron armor for preparation for the enemy's firepower. For this purpose, a 360 degree rotatable surveillance camera is mounted on the vehicle. In this case, the key idea is to recognize the head of the driver wearing a helmet so that the external camera rotated in exactly the same direction. In this paper, we introduce a method that uses a MEMS-based AHRS sensor and a illuminance sensor to compensate for the disadvantages of the existing optical method and implements it with low cost. The key idea is to set the direction of the camera by using the difference between the Euler angles detected by two sensors mounted on the camera and the helmet, and to adjust the direction with illuminance sensor from time to time to remove the drift error of sensors. The implemented prototype will show the camera's direction matches exactly in driver's one.