• Title/Summary/Keyword: Optical filter

Search Result 1,008, Processing Time 0.033 seconds

Fabrication of Optical fSDF Filter Using $As_2S_3$ Thin Film ($As_2S_3$ 박막을 이용한 광 fSDF 필터 제작)

  • 정재우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.98-101
    • /
    • 1991
  • The As2S3 thin film has a characteristics of optical modulation in both amplitude and phase. Since the As2S3 thin film can be used as a real-time reconfigurable optical filter, the fSDF filter can be optically fabricated on it. According to the modulation characteristics of the As2S3, the optimal fSDF filter recorded on this thin plate has the form of continuous amplitude and binary phase. Computer simulation and optical experiments on the optical pattern classification show that the As2S3 is suitable for the optical fSDF filter.

  • PDF

A study on design of assembly and evaluation system for optical micro film filter (필름형 마이크로 광필터 조립 평가 시스템 설계에 관한 연구)

  • 최두선;제태진;황경현;박한수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1191-1194
    • /
    • 2003
  • At present, the fabrication of optical filter for optical communication mostly depends on handwork, and only a few companies are propelling semi-automatic systems compounded with automatic and hand-operated methods. The measurement evaluation of optical filters is not commonly useful, so it causes difficulties in the producing field. And the packaging process becomes a very unstable process because the filters are judged from the results that they are not measured and immediately packaged during that process. In this situation, the automatic assembly system of optical filter for communication is extremely important and has begun to make its appearance as the most necessary technology for developing optical communication component with high-functionality. In this paper, we constructed systems of assembly and performance evaluation for micro optical collimator. And by using that, we designed a system capable of performance evaluation and assembly of film filter of about 30 $\mu\textrm{m}$ thickness as well as optical filter for common communication.

  • PDF

Development of Evaluation System and Program for the Performance of Micro Optical Filters (미소 광필터 성능평가 시스템 및 프로그램 개발)

  • Park, Han-Su;Seo, Yeong-Ho;Choe, Du-Seon;Je, Tae-Jin;Hwang, Gyeong-Hyeon
    • 연구논문집
    • /
    • s.33
    • /
    • pp.111-122
    • /
    • 2003
  • The automatic assembly system of micro optical filter is a key technology in the development of optical modules with high functionality. In order to create such automatic assembly system of optical filter, we have developed the system and program capable of evaluation of $30\mum$-thick film optical filter as well as conventional optical filters performances. Moreover, we have carried out the evaluation of optical filter using developed system and program, and we have compared and analyzed them with by conventional hand work. As results, the measured performances based on the present system are more fast, precise and reliable then those of the conventional hand work. In addition to that, the system can apply for various optical collimators and filters.

  • PDF

Development and Characterization of Active Alignment System of Optical Fiber and Film filter for Micro Optical Communication Module (초소형 광모듈 제작을 위한 광섬유와 박막형 필터의 능동형 정렬 및 평가 시스템)

  • 최두선;박한수;서영호;제태진;황경현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.111-118
    • /
    • 2004
  • The automatic assembly system of micro optical filter is a key technology in the development of optical modules with high functionality. In order to develop an automatic assembly system of optical fiber and filter, we have firstly developed the system and program capable of characterization of 30${\mu}m$-thick film filters as well as conventional optical filters. Moreover, we have carried out the characterization of optical filter using the developed system and program, and compared experimental results with by conventional handwork. The measurement of optical filters using the present system is faster, more precise and more reliable than those based on the conventional handwork.

A Study on Transmission Performance for Optical Duobinary Transmitters at 40Gbps (40Gbps에서 광 듀오바이너리 송신기의 전송 특성에 관한 연구)

  • Lee, Dong-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.43-49
    • /
    • 2014
  • This paper presents a theoretical study of transmission performance for an optical duobinary transmitter employed a Mach-Zehnder modulator and a electrical low pass filter at 40Gbps optical communication links. It depends on the bandwidth of the low pass filter in the transmitter, the optical filter and the filter in the receiver. Also, each filter affected to the various parts of the optical power spectrum. By optimizing the bandwidth of each filter, we could control the side robes and the ripples and improve the dispersion tolerance of the transmission system.

The Characteristics of Computer-Generated Holographic Optical Low-Pass Filter (컴퓨터로 설계한 홀로그램 광 저대역 필터의 특성 분석)

  • 김인길;고춘수;임성우;오용호;이재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1261-1267
    • /
    • 2003
  • Since the grating optical low-pass fillet degrades the resolution of images, we developed a hologram optical low-pass filter that show low degradation of the image and studied its characteristics. We designed the hologram that divides input beam into circular shaped 21 beams with a Monte-Carlo based hologram generation program and calculated its MTE characteristics to compare it with that of a grating filter. The hologram was manufactured through the optical lithography process and attached to a digital imaging device (Zoran 732212) for measurement. The moirfiltering is compared with zone plate images and the resolution loss is measured with USAF resolution chart. The hologram optical low-pass filter showed better characteristics in both moly filtering and resolution.

Development of Performance and Evaluation Program for Optical Filters (광필터 성능평가 프로그램 개발)

  • Choi D.-S.;Park H. S;Seo Y. H;Jae T.-J.;Whang K.-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.220-225
    • /
    • 2004
  • This paper presents a program for the automatic alignment of optical axes and evaluation of the optical filter performance which is a key technologies for the production of optical module. Recently the production of optical filter module mostly depends upon handwork or semi-automation. Moreover, they have used an expensive spectrum analyzer. In this work, we have developed an automatic alignment and evaluation program of optical filter module using photo detector and developed program for automation and cost reduction of the production of optical titter module.

Tunable Photonic Microwave Band-pass Filter with High-resolution Using XGM Effect of an RSOA

  • Kwon, Won-Bae;Lee, Chung Ghiu;Seo, Dongjun;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.563-567
    • /
    • 2018
  • We propose and experimentally demonstrate a simple tunable photonic microwave band-pass filter with high resolution using a reflective semiconductor optical amplifier (RSOA) and an optical time-delay line. The RSOA is used as a gain medium for generating cross-gain modulation (XGM) effect as well as an optical source. The optical source provides narrow spectral width by self-injection locking the RSOA in conjunction with a partial reflection filter with specific center wavelength. Then, when the RSOA is operated in the saturation region and the modulated recursive signal is injected into the RSOA, the recursive signal is inversely copied to the injection locked optical source due to the XGM effect. Also, the tunability of the passband of the proposed microwave filter is shown by controlling an optical time-delay line in a recursive loop.

An Optimal Design Method for Optical Fiber Filter of Lattice Structure (격자형 광파이버필터의 최적설계에 관한 연구)

  • 이채욱;문병현;우홍채
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.34-42
    • /
    • 1993
  • Due to the low loss, broadband and accurate short time delay properties of optical fiber, it has attracted as a delay medium for high speed and broad-band signal processing. In this paper, we consider the coherent optical fiber filter of lattice structure, which uses coherent light sources and consists of directional couplers and optical fiber delay elements.The differences between the optical fiber filter and the ordinary digital filter are 1) the coupling coefficients of directional couplers are restricted between 0 and 1. 2) the optical signal is divided into ${j\sqrt{a}}and\;{j\sqrt{1-a}}$ at the directional coupler. Considering these restrictions, the design formulae and condition of realibility for optical fiber filter of lattice structure which makes the optimal use of optical signal energy are derived.

  • PDF

Impact of Optical Filter Bandwidth on Performance of All-optical Automatic Gain-controlled Erbium-doped Fiber Amplifiers

  • Jeong, Yoo Seok;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.472-476
    • /
    • 2020
  • We have investigated the impact of optical filter bandwidth on the performance of all-optical automatic gain-controlled (AGC) erbium-doped fiber amplifiers (EDFAs). In principle, an optical bandpass filter (OBPF) should be placed within the feedback gain-clamping loop to set the lasing wavelength as well as the passband of the feedback amplified spontaneous emission (ASE) in all-optical AGC EDFA. From our measurement results, we found that the power level of feedback ASE with 0.1 nm passband of the optical filter was smaller than the ones with >0.2 nm passband cases. Therefore, the peak-to-peak power variation of the surviving channel with 0.1 nm passband was much larger than the ones with >0.2 nm passband. In addition, no significant difference in the power level of the feedback ASE was observed when the passband of the optical filter was ranging from 0.2 nm to 4.5 nm in our measurements. From these results, we have concluded that the passband of the optical filter should be slightly larger than 0.2 nm by taking into account the effect of feedback ASE power and the efficient use of the EDFA gain spectrum for the lasing ASE peak.