• Title/Summary/Keyword: Optical data processing

Search Result 362, Processing Time 0.023 seconds

Evaluation System for Color Filter Array (CFA) in Digital Camera (디지털 카메라에서 컬러 필터 어레이를 위한 평가 시스템)

  • Bae, Tae Wuk
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1741-1749
    • /
    • 2017
  • In commercial digital-cameras, color-filter filters light according to wavelength range of color filter array (CFA) and the filtered intensities contain color information of light. Then, output data of CFA is transformed to final rendered image through demosaicing process. In image processing of digital-camera, the quality of the final rendered image is affected by optical cross talk of CFA, kind of CFA pattern etc. Basically, pattern of CFA plays important role in image quality of final image rendered by digital-camera. Therefore, an evaluation system capable of quantitatively evaluating CFA is needed. This paper proposes a novel evaluation system using existing and proposed image metrics for evaluating CFAs of digital-camera. Proposed CFA evaluation system consist of color difference in CIELAB and S-CIELAB, Structure SImilarity (SSIM), MTF50, moire starting point (MSP), and subjective preference (SP). MSP and SP are newly designed for the proposed evaluation system. Proposed evaluation system is expressed in polar coordinates to analyze the characteristics of CFA objectively and intuitively. Through simulations, we confirmed that proposed CFA evaluation system can objectively assess performance of developed CFAs.

Operational Atmospheric Correction Method over Land Surfaces for GOCI Images

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.127-139
    • /
    • 2018
  • The GOCI atmospheric correction overland surfaces is essential for the time-series analysis of terrestrial environments with the very high temporal resolution. We develop an operational GOCI atmospheric correction method over land surfaces, which is rather different from the one developed for ocean surface. The GOCI atmospheric correction method basically reduces gases absorption and Rayleigh and aerosol scatterings and to derive surface reflectance from at-sensor radiance. We use the 6S radiative transfer model that requires several input parameters to calculate surface reflectance. In the sensitivity analysis, aerosol optical thickness was the most influential element among other input parameters including atmospheric model, terrain elevation, and aerosol type. To account for the highly variable nature of aerosol within the GOCI target area in northeast Asia, we generate the spatio-temporal aerosol maps using AERONET data for the aerosol correction. For a fast processing, the GOCI atmospheric correction method uses the pre-calculated look up table that directly converts at-sensor radiance to surface reflectance. The atmospheric correction method was validated by comparing with in-situ spectral measurements and MODIS reflectance products. The GOCI surface reflectance showed very similar magnitude and temporal patterns with the in-situ measurements and the MODIS reflectance. The GOCI surface reflectance was slightly higher than the in-situ measurement and MODIS reflectance by 0.01 to 0.06, which might be due to the different viewing angles. Anisotropic effect in the GOCI hourly reflectance needs to be further normalized during the following cloud-free compositing.

Sputtering Growth of ZnO Thin-Film Transistor Using Zn Target (Zn 타겟을 이용한 ZnO 박막트랜지스터의 스퍼터링 성장)

  • Yu, Meng;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.35-38
    • /
    • 2014
  • Flat panel displays fabricated on glass substrate use amorphous Si for data processing circuit. Recent progress in display technology requires a new material to replace the amorphous Si, and ZnO is a good candidate. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. ZnO is usually grown by sputtering using ZnO ceramic target. However, ceramic target is more expensive than metal target, and making large area target is very difficult. In this work we studied characteristics of ZnO thin-film transistor grown by rf sputtering using Zn metal target and $CO_2$. ZnO film was grown at $450^{\circ}C$ substrate temperature, with -70 V substrate bias voltage applied. By using these methods, our ZnO TFT showed $5.2cm^2/Vsec$ mobility, $3{\times}10^6$ on-off ratio, and -7 V threshold voltage.

Quantitative analysis using decreasing amounts of genomic DNA to assess the performance of the oligo CGH microarray

  • Song Sunny;Lazar Vladimir;Witte Anniek De;Ilsley Diane
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.71-76
    • /
    • 2006
  • Comparative genomic hybridization (CGH) is a technique for studying chromosomal changes in cancer. As cancerous cells multiply, they can undergo dramatic chromosomal changes, including chromosome loss, duplication, and the translocation of DNA from one chromosome to another. Chromosome aberrations have previously been detected using optical imaging of whole chromosomes, a technique with limited sensitivity, resolution, quantification, and throughput. Efforts in recent years to use microarrays to overcome these limitations have been hampered by inadequate sensitivity, specificity and flexibility of the microarray systems. The oligonucleotide CGH microarray system overcomes several scientific hurdles that have impeded comparative genomic studies of cancer. This new system can reliably detect single copy deletions in chromosomes. The system includes a whole human genome microarray, reagents for sample preparation, an optimized microarray processing protocol, and software for data analysis and visualization. In this study, we determined the sensitivity, accuracy and reproducibility of the new system. Using this assay, we find that the performance of the complete system was maintained over a range of input genomic DNA from 5 ug down to 0.15 ug.

  • PDF

A Study on the Ball-off of Via Balls Bonded by Solder Paste (Solder Paste로 접합된 비아볼의 Ball-off에 관한 연구)

  • Kim, Kyoung-Su;Kim, Jin-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2004
  • Package reliability test was conducted to investigate the effect of solder paste composition at BGA Package. It was found that the shape and size of the phase form are affected by the processing parameters. The material have used to fill in the via was Sn/36Pb/2Ag and Sn/0.75Cu type solder paste. Sn/36Pb/2Ag and Sn/0.75Cu paste were fabricated on Tape-BGA substrates by screen printing process, and via ball mount data were characterized with variations of dwell time of 85 seconds at reflow peak temperature at 22$0^{\circ}C$ or 24$0^{\circ}C$. The test condition was MRT 30 $^{\circ}C$/60 %RH/96 HR. Failures formed of a ball-off in solder paste process were observed by using a Optical Microscope and SEM(Scanning Electron Microscope). It was concluded that intermetallic layer growth played important roles in increasing solder fatigue strength for addition of Ag composition. The degradation of shear strength of solder composition is discussed.

Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine (LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구)

  • 오승묵;박승재;허환일;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

A Covariance-matching-based Model for Musical Symbol Recognition

  • Do, Luu-Ngoc;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Dinh, Cong Minh
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.23-33
    • /
    • 2018
  • A musical sheet is read by optical music recognition (OMR) systems that automatically recognize and reconstruct the read data to convert them into a machine-readable format such as XML so that the music can be played. This process, however, is very challenging due to the large variety of musical styles, symbol notation, and other distortions. In this paper, we present a model for the recognition of musical symbols through the use of a mobile application, whereby a camera is used to capture the input image; therefore, additional difficulties arise due to variations of the illumination and distortions. For our proposed model, we first generate a line adjacency graph (LAG) to remove the staff lines and to perform primitive detection. After symbol segmentation using the primitive information, we use a covariance-matching method to estimate the similarity between every symbol and pre-defined templates. This method generates the three hypotheses with the highest scores for likelihood measurement. We also add a global consistency (time measurements) to verify the three hypotheses in accordance with the structure of the musical sheets; one of the three hypotheses is chosen through a final decision. The results of the experiment show that our proposed method leads to promising results.

Texture Evolution of Extruded AZ80 Mg Alloy under Various Compressive Forming Conditions (AZ80 마그네슘 합금 압출재의 압축 성형조건에 따른 방위특성 분석)

  • Yoon, J.H.;Lee, S.I.;Lee, J.H.;Park, S.H.;Cho, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.240-245
    • /
    • 2012
  • With the increasing demand for light-weight materials to reduce fuel consumption, the automobile industry has extensively studied magnesium alloys which are light weight metals. The intrinsic poor formability and poor ductility at ambient temperature due to the hexagonal close-packed (HCP) crystal structure and the associated insufficient number of independent slip systems restricts the practical usage of these alloys. Hot working of magnesium alloys using a forging or extrusion enables net-shape manufacturing with enhanced formability and ductility since there are several operative non-basal slip systems in addition to basal slip plane, which increases the workability. In this research, the thermomechanical properties of AZ80 Mg alloy were obtained by compression testing at the various temperatures and strain rates. Optical microscopy and EBSD were used to study the microstructural behavior such as misorientation distribution and dynamic recrystallization. The results were correlated to the hardening and the softening of the alloy. The experimental data in conjunction with a physical explanation provide the optimal conditions for net-shape forging under hot or warm temperatures through control of the grain refinement and the working conditions.

A Study on the Characteristics of Laser Deposition Surface and Cross-section for Metal Powder (금속 분말의 레이저 적층 시 표면 및 단면 특성에 관한 연구)

  • Hwang, Jun-Ho;Shin, Seong-Seon;Jung, Gu-In;Kim, Sung-Wook;Kim, Hyun-Deok
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.17-22
    • /
    • 2016
  • In this study, we compared the physical and chemical properties evaluation for each size in the SUS316L metal powder produced by water atomization and gas atomization. and we analyzed the experimental data in order to find the basis of a suitable metal powder (SUS316L) for DED (Direct Energy Deposition) processing. Also it evaluated the properties of each layered surface and cross section according to the number of deposition and deposition speed. In the result of optical microscopy measurements, the metal powder by water atomization was the crack generated between the deposition layer, the deposition layer was poor quality. However, metal powder by gas atomization was obtained a relatively good deposition results than metal powder by water atomization.

Optimization Model for the Mixing Ratio of Coatings Based on the Design of Experiments Using Big Data Analysis (빅데이터 분석을 활용한 실험계획법 기반의 코팅제 배합비율 최적화 모형)

  • Noh, Seong Yeo;Kim, Young-Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.10
    • /
    • pp.383-392
    • /
    • 2014
  • The research for coatings is one of the most popular and active research in the polymer industry. For the coatings, electronics industry, medical and optical fields are growing more important. In particular, the trend is the increasing of the technical requirements for the performance and accuracy of the coatings by the development of automotive and electronic parts. In addition, the industry has a need of more intelligent and automated system in the industry is increasing by introduction of the IoT and big data analysis based on the environmental information and the context information. In this paper, we propose an optimization model for the design of experiments based coating formulation data objects using the Internet technologies and big data analytics. In this paper, the coating formulation was calculated based on the best data analysis is based on the experimental design, modify the operator with respect to the error caused based on the coating formulation used in the actual production site data and the corrected result data. Further optimization model to correct the reference value by leveraging big data analysis and Internet of things technology only existing coating formulation is applied as the reference data using a manufacturing environment and context information retrieval in color and quality, the most important factor in maintaining and was derived. Based on data obtained from an experiment and analysis is improving the accuracy of the combination data and making it possible to give a LOT shorter working hours per data. Also the data shortens the production time due to the reduction in the delivery time per treatment and It can contribute to cost reduction or the like defect rate reduced. Further, it is possible to obtain a standard data in the manufacturing process for the various models.