• Title/Summary/Keyword: Optical approach

Search Result 721, Processing Time 0.267 seconds

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.

Optical Scanning Holographic Approach to Three-Dimensional Television

  • Poon, Ting-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.281-284
    • /
    • 2002
  • We first review a real-time holographic recording technique called optical scanning holography (OSH) and discuss holographic reconstruction using spatial light modulators (SLMs). We then present how the overall system can be used for three-dimensional (3-D) holographic television (TV) system and address some of the issues encountered. Finally, we suggest some techniques to alleviate the issues encountered in such a 3-D holographic TV.

  • PDF

A new approach to reduce the computation time of Genetic Algorithm for computer- generated holograms (CGH 생성을 위한 유전알고리즘의 최적화 시간단축)

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.242-243
    • /
    • 2003
  • A CGH is a hologram generated by computer. It is widely applied to wavefront manipulation, synthesis, optical information processing and interferometer. Some methods have been used to determine the optimum phase pattern to achieve high diffraction efficiency and uniform intensity such as DBS (Direct Binary Search), SA (Simulated Annealing), GA(Genetic Algorithm). These methods require long computation time to generate a hologram. (omitted)

  • PDF

The Development and Evaluation of Cylinderical ROM-Media (원통형 롬-미디어의 개발과 평가)

  • Sung, Kap-Je;Cha, Sung-Woon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.445-450
    • /
    • 2001
  • DVD(Digital Versatile Disk) is the data storage media devised to make high storage density and high data input/output possible. Therefore higher rotational speed and better accuracy in optical pick-up are required compared with the existing optical storage device. These operational functional requirements are concerned with abilities of optical storage device. Especially, High rotational speed is deeply concerned with the noise and vibration of optical storage device, is important problem in development of optical storage device so much. This paper propose a new concept ROM media of optical storage device named as Cylindrical ROM media, and evaluate this by means of Axiomatic approach and empirical data.

  • PDF

Dependence of the Gain Factor of the Reflective Polarizer on the Configuration of Optical Sheets

  • Lee, Byung-Woo;Yu, Mi-Yeon;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • The correlation between the optical performance of the reflective polarizer, which is a key optical component for the brightness enhancement of the liquid crystal display (LCD), and the configuration of optical sheets was investigated in a direct-lit CCFL (cold-cathode fluorescent lamp) backlight. The optical gain of the reflective polarizer, the polarization state of the light emitted from each film, and the loss factor for the polarization conversion process occurring in the lower part of the backlight were determined using a phenomenological approach for the polarization recycling process. The present study suggests that the correlation between the optical performance of the brightness enhancement films and the backlight configuration should be carefully considered in the optimization of the backlight structure.

Optical pulse compression using a phase modulator and a dispersive optical fiber (위상 변조기와 분산 광섬유를 이용한 광펄스 압축)

  • 명승일;한상진;서동선;최영완;박재동;주무정
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.243-247
    • /
    • 1999
  • We report the generation of inherently stable, high-speed, nearly transform-limited, optical pulses by chirped pulse compression, in which sinusoidally driven phase modulator generates frequency chirped pulses that are subsequently compressed by a dispersive optical fiber. Experimental results show that $sech^2$ shape pulses with a pulse width of ~14 ps and a time bandwidth product of ~0.34 are successfully generated at 10 GHz repetition rate. In contrast to other methods, such as higher order soliton compression, this approach does not depend on the optical power and thus shows promise for application to low-power lasers.

  • PDF

Optical Camera Communications: Future Approach of Visible Light Communication

  • Le, Nam-Tuan;Nguyen, Trang;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.380-384
    • /
    • 2015
  • As an extension of Visible Light Communication, Optical Camera Communications (OCC) will be a promising service for smart devices. Especially in line of sight marketing service and indoor localization application, by using camera which exists in smart devices, small amount of data (url link) can be broadcasted or find direction from the illumination system. This paper introduces the operation of wireless communications technology that transmits optical information from optical light source to camera, called Optical Camera Communications.

Image Reconstruction Based on Deep Learning for the SPIDER Optical Interferometric System

  • Sun, Yan;Liu, Chunling;Ma, Hongliu;Zhang, Wang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.260-269
    • /
    • 2022
  • Segmented planar imaging detector for electro-optical reconnaissance (SPIDER) is an emerging technology for optical imaging. However, this novel detection approach is faced with degraded imaging quality. In this study, a 6 × 6 planar waveguide is used after each lenslet to expand the field of view. The imaging principles of field-plane waveguide structures are described in detail. The local multiple-sampling simulation mode is adopted to process the simulation of the improved imaging system. A novel image-reconstruction algorithm based on deep learning is proposed, which can effectively address the defects in imaging quality that arise during image reconstruction. The proposed algorithm is compared to a conventional algorithm to verify its better reconstruction results. The comparison of different scenarios confirms the suitability of the algorithm to the system in this paper.

AMD Identification from OCT Volume Data using Deep Convolutional Neural Network (심층 컨볼루션 신경망을 이용한 OCT 볼륨 데이터로부터 AMD 진단)

  • Kwon, Oh-Heum;Jung, Yoo Jin;Song, Ha-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1291-1298
    • /
    • 2017
  • Optical coherence tomography (OCT) is the most common medical imaging device with the ability to image the retina in eyes at micrometer resolution and to visualize the pathological indicators of many retinal diseases such as Age-Related Macular Degeneration (AMD) and diabetic retinopathy. Accordingly, there have been research activities to analyze and process OCT images to identify those indicators and make medical decisions based on the findings. In this paper, we use a deep convolutional neural network for analysis of OCT volume data to distinguish AMD from normal patients. We propose a novel approach where images in each OCT volume are grouped together into sub-volumes and the network is trained by those sub-volumes instead of individual images. We conducted an experiment using public data set to evaluate the performance of the proposed approach. The experiment confirmed performance improvement of our approach over the traditional image-by-image training approach.

Multiview-based Spectral Weighted and Low-Rank for Row-sparsity Hyperspectral Unmixing

  • Zhang, Shuaiyang;Hua, Wenshen;Liu, Jie;Li, Gang;Wang, Qianghui
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.431-443
    • /
    • 2021
  • Sparse unmixing has been proven to be an effective method for hyperspectral unmixing. Hyperspectral images contain rich spectral and spatial information. The means to make full use of spectral information, spatial information, and enhanced sparsity constraints are the main research directions to improve the accuracy of sparse unmixing. However, many algorithms only focus on one or two of these factors, because it is difficult to construct an unmixing model that considers all three factors. To address this issue, a novel algorithm called multiview-based spectral weighted and low-rank row-sparsity unmixing is proposed. A multiview data set is generated through spectral partitioning, and then spectral weighting is imposed on it to exploit the abundant spectral information. The row-sparsity approach, which controls the sparsity by the l2,0 norm, outperforms the single-sparsity approach in many scenarios. Many algorithms use convex relaxation methods to solve the l2,0 norm to avoid the NP-hard problem, but this will reduce sparsity and unmixing accuracy. In this paper, a row-hard-threshold function is introduced to solve the l2,0 norm directly, which guarantees the sparsity of the results. The high spatial correlation of hyperspectral images is associated with low column rank; therefore, the low-rank constraint is adopted to utilize spatial information. Experiments with simulated and real data prove that the proposed algorithm can obtain better unmixing results.